Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations
A distributed-order time- and Riesz space-fractional Schrödinger equation (DOT–RSFSE) is considered. Distributed-order derivatives indicate fractional derivatives that are integrated over the order of the differentiation within a given range. That is to say, the order of the time derivative ranges f...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2017-07, Vol.89 (2), p.1415-1432 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1432 |
---|---|
container_issue | 2 |
container_start_page | 1415 |
container_title | Nonlinear dynamics |
container_volume | 89 |
creator | Bhrawy, A. H. Zaky, M. A. |
description | A distributed-order time- and Riesz space-fractional Schrödinger equation (DOT–RSFSE) is considered. Distributed-order derivatives indicate fractional derivatives that are integrated over the order of the differentiation within a given range. That is to say, the order of the time derivative ranges from zero to one. The space-fractional derivative is defined in the Riesz sense. In this paper, a new numerical approach is developed for simulating DOT–RSFSE. The main characteristic behind this approach is to investigate a space-time spectral approximation for spatial and temporal discretizations. Firstly, the given problem in one and two dimensions is transformed into a system of distributed-order fractional differential equations by using Jacobi–Gauss–Lobatto (J–G–L) collocation approach. Then, an efficient spectral method based on Jacobi–Gauss–Radau (J–G–R) collocation approach is applied to solve this system. Furthermore, the error of the approximate solution is theoretically estimated and numerically confirmed in both temporal and spatial discretizations. In order to highlight the effectiveness of our approaches, several numerical examples are given and compared with those reported in the literature. |
doi_str_mv | 10.1007/s11071-017-3525-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259454064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915599853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-47c27c4d1f5dc14e4d5c1fc900c8daa623f82dbb37be1bb40dd70ec31b0fcf7b3</originalsourceid><addsrcrecordid>eNp9kLlOAzEQhi0EEiHwAHQrURvGV7xboohLiqAApFRYuz6Coz2CvVuEB-MFeDEcloIGqhnNf2j0IXRK4JwAyItICEiCgUjMBBV4u4cmREiG6axY7qMJFJRjKGB5iI5iXAMAo5BP0Mv90NjgdVln0TdDXfa-a7POZWnvPTa-sW1Mp6QbH_vgq6G3BnfB2JCtbGtDWft3a7JH_Ro-P4xvV0mwb8N3UTxGB66soz35mVP0fH31NL_Fi4ebu_nlAmvGeY-51FRqbogTRhNuuRGaOF0A6NyU5Ywyl1NTVUxWllQVB2MkWM1IBU47WbEpOht7N6F7G2zs1bobQvo6KkpFwQWHGf_PRQoiRFHkgiUXGV06dDEG69Qm-KYMW0VA7WCrEbZKsNUOttqmDB0zMXl3CH41_xn6Aqo2hdY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259454064</pqid></control><display><type>article</type><title>Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations</title><source>SpringerNature Journals</source><creator>Bhrawy, A. H. ; Zaky, M. A.</creator><creatorcontrib>Bhrawy, A. H. ; Zaky, M. A.</creatorcontrib><description>A distributed-order time- and Riesz space-fractional Schrödinger equation (DOT–RSFSE) is considered. Distributed-order derivatives indicate fractional derivatives that are integrated over the order of the differentiation within a given range. That is to say, the order of the time derivative ranges from zero to one. The space-fractional derivative is defined in the Riesz sense. In this paper, a new numerical approach is developed for simulating DOT–RSFSE. The main characteristic behind this approach is to investigate a space-time spectral approximation for spatial and temporal discretizations. Firstly, the given problem in one and two dimensions is transformed into a system of distributed-order fractional differential equations by using Jacobi–Gauss–Lobatto (J–G–L) collocation approach. Then, an efficient spectral method based on Jacobi–Gauss–Radau (J–G–R) collocation approach is applied to solve this system. Furthermore, the error of the approximate solution is theoretically estimated and numerically confirmed in both temporal and spatial discretizations. In order to highlight the effectiveness of our approaches, several numerical examples are given and compared with those reported in the literature.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-017-3525-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applied mathematics ; Approximation ; Automotive Engineering ; Cauchy problems ; Classical Mechanics ; Collocation ; Collocation methods ; Computer simulation ; Control ; Derivatives ; Differential equations ; Differentiation ; Dynamical Systems ; Engineering ; Mathematical analysis ; Mathematical functions ; Mechanical Engineering ; Original Paper ; Quantum physics ; Schrodinger equation ; Science ; Simulation ; Spectral methods ; Vibration</subject><ispartof>Nonlinear dynamics, 2017-07, Vol.89 (2), p.1415-1432</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-47c27c4d1f5dc14e4d5c1fc900c8daa623f82dbb37be1bb40dd70ec31b0fcf7b3</citedby><cites>FETCH-LOGICAL-c344t-47c27c4d1f5dc14e4d5c1fc900c8daa623f82dbb37be1bb40dd70ec31b0fcf7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-017-3525-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-017-3525-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bhrawy, A. H.</creatorcontrib><creatorcontrib>Zaky, M. A.</creatorcontrib><title>Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>A distributed-order time- and Riesz space-fractional Schrödinger equation (DOT–RSFSE) is considered. Distributed-order derivatives indicate fractional derivatives that are integrated over the order of the differentiation within a given range. That is to say, the order of the time derivative ranges from zero to one. The space-fractional derivative is defined in the Riesz sense. In this paper, a new numerical approach is developed for simulating DOT–RSFSE. The main characteristic behind this approach is to investigate a space-time spectral approximation for spatial and temporal discretizations. Firstly, the given problem in one and two dimensions is transformed into a system of distributed-order fractional differential equations by using Jacobi–Gauss–Lobatto (J–G–L) collocation approach. Then, an efficient spectral method based on Jacobi–Gauss–Radau (J–G–R) collocation approach is applied to solve this system. Furthermore, the error of the approximate solution is theoretically estimated and numerically confirmed in both temporal and spatial discretizations. In order to highlight the effectiveness of our approaches, several numerical examples are given and compared with those reported in the literature.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Automotive Engineering</subject><subject>Cauchy problems</subject><subject>Classical Mechanics</subject><subject>Collocation</subject><subject>Collocation methods</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Differentiation</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Quantum physics</subject><subject>Schrodinger equation</subject><subject>Science</subject><subject>Simulation</subject><subject>Spectral methods</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kLlOAzEQhi0EEiHwAHQrURvGV7xboohLiqAApFRYuz6Coz2CvVuEB-MFeDEcloIGqhnNf2j0IXRK4JwAyItICEiCgUjMBBV4u4cmREiG6axY7qMJFJRjKGB5iI5iXAMAo5BP0Mv90NjgdVln0TdDXfa-a7POZWnvPTa-sW1Mp6QbH_vgq6G3BnfB2JCtbGtDWft3a7JH_Ro-P4xvV0mwb8N3UTxGB66soz35mVP0fH31NL_Fi4ebu_nlAmvGeY-51FRqbogTRhNuuRGaOF0A6NyU5Ywyl1NTVUxWllQVB2MkWM1IBU47WbEpOht7N6F7G2zs1bobQvo6KkpFwQWHGf_PRQoiRFHkgiUXGV06dDEG69Qm-KYMW0VA7WCrEbZKsNUOttqmDB0zMXl3CH41_xn6Aqo2hdY</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Bhrawy, A. H.</creator><creator>Zaky, M. A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170701</creationdate><title>Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations</title><author>Bhrawy, A. H. ; Zaky, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-47c27c4d1f5dc14e4d5c1fc900c8daa623f82dbb37be1bb40dd70ec31b0fcf7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Automotive Engineering</topic><topic>Cauchy problems</topic><topic>Classical Mechanics</topic><topic>Collocation</topic><topic>Collocation methods</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Differentiation</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Quantum physics</topic><topic>Schrodinger equation</topic><topic>Science</topic><topic>Simulation</topic><topic>Spectral methods</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhrawy, A. H.</creatorcontrib><creatorcontrib>Zaky, M. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhrawy, A. H.</au><au>Zaky, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>89</volume><issue>2</issue><spage>1415</spage><epage>1432</epage><pages>1415-1432</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>A distributed-order time- and Riesz space-fractional Schrödinger equation (DOT–RSFSE) is considered. Distributed-order derivatives indicate fractional derivatives that are integrated over the order of the differentiation within a given range. That is to say, the order of the time derivative ranges from zero to one. The space-fractional derivative is defined in the Riesz sense. In this paper, a new numerical approach is developed for simulating DOT–RSFSE. The main characteristic behind this approach is to investigate a space-time spectral approximation for spatial and temporal discretizations. Firstly, the given problem in one and two dimensions is transformed into a system of distributed-order fractional differential equations by using Jacobi–Gauss–Lobatto (J–G–L) collocation approach. Then, an efficient spectral method based on Jacobi–Gauss–Radau (J–G–R) collocation approach is applied to solve this system. Furthermore, the error of the approximate solution is theoretically estimated and numerically confirmed in both temporal and spatial discretizations. In order to highlight the effectiveness of our approaches, several numerical examples are given and compared with those reported in the literature.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-017-3525-y</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2017-07, Vol.89 (2), p.1415-1432 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2259454064 |
source | SpringerNature Journals |
subjects | Applied mathematics Approximation Automotive Engineering Cauchy problems Classical Mechanics Collocation Collocation methods Computer simulation Control Derivatives Differential equations Differentiation Dynamical Systems Engineering Mathematical analysis Mathematical functions Mechanical Engineering Original Paper Quantum physics Schrodinger equation Science Simulation Spectral methods Vibration |
title | Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20multi-dimensional%20distributed-order%20generalized%20Schr%C3%B6dinger%20equations&rft.jtitle=Nonlinear%20dynamics&rft.au=Bhrawy,%20A.%20H.&rft.date=2017-07-01&rft.volume=89&rft.issue=2&rft.spage=1415&rft.epage=1432&rft.pages=1415-1432&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-017-3525-y&rft_dat=%3Cproquest_cross%3E1915599853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259454064&rft_id=info:pmid/&rfr_iscdi=true |