Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations

A distributed-order time- and Riesz space-fractional Schrödinger equation (DOT–RSFSE) is considered. Distributed-order derivatives indicate fractional derivatives that are integrated over the order of the differentiation within a given range. That is to say, the order of the time derivative ranges f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2017-07, Vol.89 (2), p.1415-1432
Hauptverfasser: Bhrawy, A. H., Zaky, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1432
container_issue 2
container_start_page 1415
container_title Nonlinear dynamics
container_volume 89
creator Bhrawy, A. H.
Zaky, M. A.
description A distributed-order time- and Riesz space-fractional Schrödinger equation (DOT–RSFSE) is considered. Distributed-order derivatives indicate fractional derivatives that are integrated over the order of the differentiation within a given range. That is to say, the order of the time derivative ranges from zero to one. The space-fractional derivative is defined in the Riesz sense. In this paper, a new numerical approach is developed for simulating DOT–RSFSE. The main characteristic behind this approach is to investigate a space-time spectral approximation for spatial and temporal discretizations. Firstly, the given problem in one and two dimensions is transformed into a system of distributed-order fractional differential equations by using Jacobi–Gauss–Lobatto (J–G–L) collocation approach. Then, an efficient spectral method based on Jacobi–Gauss–Radau (J–G–R) collocation approach is applied to solve this system. Furthermore, the error of the approximate solution is theoretically estimated and numerically confirmed in both temporal and spatial discretizations. In order to highlight the effectiveness of our approaches, several numerical examples are given and compared with those reported in the literature.
doi_str_mv 10.1007/s11071-017-3525-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259454064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915599853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-47c27c4d1f5dc14e4d5c1fc900c8daa623f82dbb37be1bb40dd70ec31b0fcf7b3</originalsourceid><addsrcrecordid>eNp9kLlOAzEQhi0EEiHwAHQrURvGV7xboohLiqAApFRYuz6Coz2CvVuEB-MFeDEcloIGqhnNf2j0IXRK4JwAyItICEiCgUjMBBV4u4cmREiG6axY7qMJFJRjKGB5iI5iXAMAo5BP0Mv90NjgdVln0TdDXfa-a7POZWnvPTa-sW1Mp6QbH_vgq6G3BnfB2JCtbGtDWft3a7JH_Ro-P4xvV0mwb8N3UTxGB66soz35mVP0fH31NL_Fi4ebu_nlAmvGeY-51FRqbogTRhNuuRGaOF0A6NyU5Ywyl1NTVUxWllQVB2MkWM1IBU47WbEpOht7N6F7G2zs1bobQvo6KkpFwQWHGf_PRQoiRFHkgiUXGV06dDEG69Qm-KYMW0VA7WCrEbZKsNUOttqmDB0zMXl3CH41_xn6Aqo2hdY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259454064</pqid></control><display><type>article</type><title>Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations</title><source>SpringerNature Journals</source><creator>Bhrawy, A. H. ; Zaky, M. A.</creator><creatorcontrib>Bhrawy, A. H. ; Zaky, M. A.</creatorcontrib><description>A distributed-order time- and Riesz space-fractional Schrödinger equation (DOT–RSFSE) is considered. Distributed-order derivatives indicate fractional derivatives that are integrated over the order of the differentiation within a given range. That is to say, the order of the time derivative ranges from zero to one. The space-fractional derivative is defined in the Riesz sense. In this paper, a new numerical approach is developed for simulating DOT–RSFSE. The main characteristic behind this approach is to investigate a space-time spectral approximation for spatial and temporal discretizations. Firstly, the given problem in one and two dimensions is transformed into a system of distributed-order fractional differential equations by using Jacobi–Gauss–Lobatto (J–G–L) collocation approach. Then, an efficient spectral method based on Jacobi–Gauss–Radau (J–G–R) collocation approach is applied to solve this system. Furthermore, the error of the approximate solution is theoretically estimated and numerically confirmed in both temporal and spatial discretizations. In order to highlight the effectiveness of our approaches, several numerical examples are given and compared with those reported in the literature.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-017-3525-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applied mathematics ; Approximation ; Automotive Engineering ; Cauchy problems ; Classical Mechanics ; Collocation ; Collocation methods ; Computer simulation ; Control ; Derivatives ; Differential equations ; Differentiation ; Dynamical Systems ; Engineering ; Mathematical analysis ; Mathematical functions ; Mechanical Engineering ; Original Paper ; Quantum physics ; Schrodinger equation ; Science ; Simulation ; Spectral methods ; Vibration</subject><ispartof>Nonlinear dynamics, 2017-07, Vol.89 (2), p.1415-1432</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-47c27c4d1f5dc14e4d5c1fc900c8daa623f82dbb37be1bb40dd70ec31b0fcf7b3</citedby><cites>FETCH-LOGICAL-c344t-47c27c4d1f5dc14e4d5c1fc900c8daa623f82dbb37be1bb40dd70ec31b0fcf7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-017-3525-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-017-3525-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bhrawy, A. H.</creatorcontrib><creatorcontrib>Zaky, M. A.</creatorcontrib><title>Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>A distributed-order time- and Riesz space-fractional Schrödinger equation (DOT–RSFSE) is considered. Distributed-order derivatives indicate fractional derivatives that are integrated over the order of the differentiation within a given range. That is to say, the order of the time derivative ranges from zero to one. The space-fractional derivative is defined in the Riesz sense. In this paper, a new numerical approach is developed for simulating DOT–RSFSE. The main characteristic behind this approach is to investigate a space-time spectral approximation for spatial and temporal discretizations. Firstly, the given problem in one and two dimensions is transformed into a system of distributed-order fractional differential equations by using Jacobi–Gauss–Lobatto (J–G–L) collocation approach. Then, an efficient spectral method based on Jacobi–Gauss–Radau (J–G–R) collocation approach is applied to solve this system. Furthermore, the error of the approximate solution is theoretically estimated and numerically confirmed in both temporal and spatial discretizations. In order to highlight the effectiveness of our approaches, several numerical examples are given and compared with those reported in the literature.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Automotive Engineering</subject><subject>Cauchy problems</subject><subject>Classical Mechanics</subject><subject>Collocation</subject><subject>Collocation methods</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Differentiation</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Quantum physics</subject><subject>Schrodinger equation</subject><subject>Science</subject><subject>Simulation</subject><subject>Spectral methods</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kLlOAzEQhi0EEiHwAHQrURvGV7xboohLiqAApFRYuz6Coz2CvVuEB-MFeDEcloIGqhnNf2j0IXRK4JwAyItICEiCgUjMBBV4u4cmREiG6axY7qMJFJRjKGB5iI5iXAMAo5BP0Mv90NjgdVln0TdDXfa-a7POZWnvPTa-sW1Mp6QbH_vgq6G3BnfB2JCtbGtDWft3a7JH_Ro-P4xvV0mwb8N3UTxGB66soz35mVP0fH31NL_Fi4ebu_nlAmvGeY-51FRqbogTRhNuuRGaOF0A6NyU5Ywyl1NTVUxWllQVB2MkWM1IBU47WbEpOht7N6F7G2zs1bobQvo6KkpFwQWHGf_PRQoiRFHkgiUXGV06dDEG69Qm-KYMW0VA7WCrEbZKsNUOttqmDB0zMXl3CH41_xn6Aqo2hdY</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Bhrawy, A. H.</creator><creator>Zaky, M. A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170701</creationdate><title>Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations</title><author>Bhrawy, A. H. ; Zaky, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-47c27c4d1f5dc14e4d5c1fc900c8daa623f82dbb37be1bb40dd70ec31b0fcf7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Automotive Engineering</topic><topic>Cauchy problems</topic><topic>Classical Mechanics</topic><topic>Collocation</topic><topic>Collocation methods</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Differentiation</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Quantum physics</topic><topic>Schrodinger equation</topic><topic>Science</topic><topic>Simulation</topic><topic>Spectral methods</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhrawy, A. H.</creatorcontrib><creatorcontrib>Zaky, M. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhrawy, A. H.</au><au>Zaky, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>89</volume><issue>2</issue><spage>1415</spage><epage>1432</epage><pages>1415-1432</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>A distributed-order time- and Riesz space-fractional Schrödinger equation (DOT–RSFSE) is considered. Distributed-order derivatives indicate fractional derivatives that are integrated over the order of the differentiation within a given range. That is to say, the order of the time derivative ranges from zero to one. The space-fractional derivative is defined in the Riesz sense. In this paper, a new numerical approach is developed for simulating DOT–RSFSE. The main characteristic behind this approach is to investigate a space-time spectral approximation for spatial and temporal discretizations. Firstly, the given problem in one and two dimensions is transformed into a system of distributed-order fractional differential equations by using Jacobi–Gauss–Lobatto (J–G–L) collocation approach. Then, an efficient spectral method based on Jacobi–Gauss–Radau (J–G–R) collocation approach is applied to solve this system. Furthermore, the error of the approximate solution is theoretically estimated and numerically confirmed in both temporal and spatial discretizations. In order to highlight the effectiveness of our approaches, several numerical examples are given and compared with those reported in the literature.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-017-3525-y</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2017-07, Vol.89 (2), p.1415-1432
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259454064
source SpringerNature Journals
subjects Applied mathematics
Approximation
Automotive Engineering
Cauchy problems
Classical Mechanics
Collocation
Collocation methods
Computer simulation
Control
Derivatives
Differential equations
Differentiation
Dynamical Systems
Engineering
Mathematical analysis
Mathematical functions
Mechanical Engineering
Original Paper
Quantum physics
Schrodinger equation
Science
Simulation
Spectral methods
Vibration
title Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20multi-dimensional%20distributed-order%20generalized%20Schr%C3%B6dinger%20equations&rft.jtitle=Nonlinear%20dynamics&rft.au=Bhrawy,%20A.%20H.&rft.date=2017-07-01&rft.volume=89&rft.issue=2&rft.spage=1415&rft.epage=1432&rft.pages=1415-1432&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-017-3525-y&rft_dat=%3Cproquest_cross%3E1915599853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259454064&rft_id=info:pmid/&rfr_iscdi=true