Intermittency in pitch-plunge aeroelastic systems explained through stochastic bifurcations
Aeroelastic systems with hardening nonlinearity exhibit supercritical Hopf bifurcation when the flow velocity exceeds a critical velocity leading to self-sustaining large amplitude limit cycle oscillations known as flutter. This study investigates the effects of irregular fluctuations in the flow on...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2018-05, Vol.92 (3), p.1225-1241 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aeroelastic systems with hardening nonlinearity exhibit supercritical Hopf bifurcation when the flow velocity exceeds a critical velocity leading to self-sustaining large amplitude limit cycle oscillations known as flutter. This study investigates the effects of irregular fluctuations in the flow on the dynamical stability characteristics of a two-degree-of-freedom pitch-plunge aeroelastic system with hardening nonlinearity. Dynamical or D-bifurcations are investigated through the computation of the largest Lyapunov exponent, while phenomenological or P-bifurcation analysis is carried out by examining the structure of the joint probability density function of the response quantities and their instantaneous time derivatives. The qualitative nature of P-bifurcation analysis makes it difficult to pinpoint the regimes of different response dynamics. In the light of this difficulty, a quantitative analysis using the Shannon entropy measure has been undertaken to quantify the P-bifurcation regime. This regime is shown to be coincident with the intermittency regime observed in the response time histories prior to flutter oscillations in fluctuating flows. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-018-4121-5 |