Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads
In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large de...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2018, Vol.91 (1), p.187-215 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 215 |
---|---|
container_issue | 1 |
container_start_page | 187 |
container_title | Nonlinear dynamics |
container_volume | 91 |
creator | Darabi, M. Ganesan, R. |
description | In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large deflection plate equations of motion are solved by using Galerkin’s technique that leads to a system of nonlinear Mathieu-Hill equations. Dynamically unstable regions, and both stable- and unstable-solution amplitudes of the steady-state vibrations are obtained by applying the Bolotin’s method. The nonlinear dynamic stability characteristics of both antisymmetric and symmetric cross-ply laminates with different lamination schemes are examined. A detailed parametric study is conducted to examine and compare the effects of the orthotropy, magnitude of both tensile and compressive longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness ratios, and in-plane transverse wave number on the parametric resonance particularly the steady-state vibrations amplitude. The present results show good agreement with that available in the literature. |
doi_str_mv | 10.1007/s11071-017-3863-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259447124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1981174115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-3b2001fb242b242ab5bb0079a2999380c91e6ed0185637505d8d3f0bd48db0a53</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouD4-gLeA5-hMkm6bo4gvEL0oeAtJk2qWblKT7mG_va3rwYsehoH5P2B-hJwhXCBAfVkQoUYGWDPRLAVTe2SBVS0YX6q3fbIAxSUDBW-H5KiUFQAIDs2CxKcU-xC9ydRto1mHloZYRmNDH8YtNdH02xIKTR3tJzWa0TvapvWQShg9HT9CpEM_XQstG7vy7ayPiQ4-h-S-29ikR0_7ZFw5IQed6Ys__dnH5PX25uX6nj0-3z1cXz2yVkg5MmE5AHaWSz6PsZW105fKcKWUaKBV6JfeATbVUtQVVK5xogPrZOMsmEock_Nd75DT58aXUa_SJk_PFM15paSskcv_XKgaxFoizl24c7U5lZJ9p4cc1iZvNYKe4esdfD3B1zN8raYM32XK5I3vPv9q_jP0BcJOh58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259447124</pqid></control><display><type>article</type><title>Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads</title><source>SpringerLink Journals</source><creator>Darabi, M. ; Ganesan, R.</creator><creatorcontrib>Darabi, M. ; Ganesan, R.</creatorcontrib><description>In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large deflection plate equations of motion are solved by using Galerkin’s technique that leads to a system of nonlinear Mathieu-Hill equations. Dynamically unstable regions, and both stable- and unstable-solution amplitudes of the steady-state vibrations are obtained by applying the Bolotin’s method. The nonlinear dynamic stability characteristics of both antisymmetric and symmetric cross-ply laminates with different lamination schemes are examined. A detailed parametric study is conducted to examine and compare the effects of the orthotropy, magnitude of both tensile and compressive longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness ratios, and in-plane transverse wave number on the parametric resonance particularly the steady-state vibrations amplitude. The present results show good agreement with that available in the literature.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-017-3863-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amplitudes ; Aspect ratio ; Automotive Engineering ; Classical Mechanics ; Composite structures ; Control ; Dynamic stability ; Dynamical Systems ; Engineering ; Equations of motion ; Galerkin method ; Geometric nonlinearity ; Laminates ; Mathematical analysis ; Mechanical Engineering ; Nonlinear analysis ; Nonlinear dynamics ; Nonlinear equations ; Original Paper ; Stability analysis ; Steady state ; Thin plates ; Transverse waves ; Vibration</subject><ispartof>Nonlinear dynamics, 2018, Vol.91 (1), p.187-215</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-3b2001fb242b242ab5bb0079a2999380c91e6ed0185637505d8d3f0bd48db0a53</citedby><cites>FETCH-LOGICAL-c344t-3b2001fb242b242ab5bb0079a2999380c91e6ed0185637505d8d3f0bd48db0a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-017-3863-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-017-3863-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Darabi, M.</creatorcontrib><creatorcontrib>Ganesan, R.</creatorcontrib><title>Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large deflection plate equations of motion are solved by using Galerkin’s technique that leads to a system of nonlinear Mathieu-Hill equations. Dynamically unstable regions, and both stable- and unstable-solution amplitudes of the steady-state vibrations are obtained by applying the Bolotin’s method. The nonlinear dynamic stability characteristics of both antisymmetric and symmetric cross-ply laminates with different lamination schemes are examined. A detailed parametric study is conducted to examine and compare the effects of the orthotropy, magnitude of both tensile and compressive longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness ratios, and in-plane transverse wave number on the parametric resonance particularly the steady-state vibrations amplitude. The present results show good agreement with that available in the literature.</description><subject>Amplitudes</subject><subject>Aspect ratio</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Composite structures</subject><subject>Control</subject><subject>Dynamic stability</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Galerkin method</subject><subject>Geometric nonlinearity</subject><subject>Laminates</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Nonlinear analysis</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear equations</subject><subject>Original Paper</subject><subject>Stability analysis</subject><subject>Steady state</subject><subject>Thin plates</subject><subject>Transverse waves</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLxDAQx4MouD4-gLeA5-hMkm6bo4gvEL0oeAtJk2qWblKT7mG_va3rwYsehoH5P2B-hJwhXCBAfVkQoUYGWDPRLAVTe2SBVS0YX6q3fbIAxSUDBW-H5KiUFQAIDs2CxKcU-xC9ydRto1mHloZYRmNDH8YtNdH02xIKTR3tJzWa0TvapvWQShg9HT9CpEM_XQstG7vy7ayPiQ4-h-S-29ikR0_7ZFw5IQed6Ys__dnH5PX25uX6nj0-3z1cXz2yVkg5MmE5AHaWSz6PsZW105fKcKWUaKBV6JfeATbVUtQVVK5xogPrZOMsmEock_Nd75DT58aXUa_SJk_PFM15paSskcv_XKgaxFoizl24c7U5lZJ9p4cc1iZvNYKe4esdfD3B1zN8raYM32XK5I3vPv9q_jP0BcJOh58</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Darabi, M.</creator><creator>Ganesan, R.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2018</creationdate><title>Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads</title><author>Darabi, M. ; Ganesan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-3b2001fb242b242ab5bb0079a2999380c91e6ed0185637505d8d3f0bd48db0a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplitudes</topic><topic>Aspect ratio</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Composite structures</topic><topic>Control</topic><topic>Dynamic stability</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Galerkin method</topic><topic>Geometric nonlinearity</topic><topic>Laminates</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Nonlinear analysis</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear equations</topic><topic>Original Paper</topic><topic>Stability analysis</topic><topic>Steady state</topic><topic>Thin plates</topic><topic>Transverse waves</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darabi, M.</creatorcontrib><creatorcontrib>Ganesan, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darabi, M.</au><au>Ganesan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2018</date><risdate>2018</risdate><volume>91</volume><issue>1</issue><spage>187</spage><epage>215</epage><pages>187-215</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large deflection plate equations of motion are solved by using Galerkin’s technique that leads to a system of nonlinear Mathieu-Hill equations. Dynamically unstable regions, and both stable- and unstable-solution amplitudes of the steady-state vibrations are obtained by applying the Bolotin’s method. The nonlinear dynamic stability characteristics of both antisymmetric and symmetric cross-ply laminates with different lamination schemes are examined. A detailed parametric study is conducted to examine and compare the effects of the orthotropy, magnitude of both tensile and compressive longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness ratios, and in-plane transverse wave number on the parametric resonance particularly the steady-state vibrations amplitude. The present results show good agreement with that available in the literature.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-017-3863-9</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2018, Vol.91 (1), p.187-215 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2259447124 |
source | SpringerLink Journals |
subjects | Amplitudes Aspect ratio Automotive Engineering Classical Mechanics Composite structures Control Dynamic stability Dynamical Systems Engineering Equations of motion Galerkin method Geometric nonlinearity Laminates Mathematical analysis Mechanical Engineering Nonlinear analysis Nonlinear dynamics Nonlinear equations Original Paper Stability analysis Steady state Thin plates Transverse waves Vibration |
title | Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20instability%20analysis%20of%20laminated%20composite%20thin%20plates%20subjected%20to%20periodic%20in-plane%20loads&rft.jtitle=Nonlinear%20dynamics&rft.au=Darabi,%20M.&rft.date=2018&rft.volume=91&rft.issue=1&rft.spage=187&rft.epage=215&rft.pages=187-215&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-017-3863-9&rft_dat=%3Cproquest_cross%3E1981174115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259447124&rft_id=info:pmid/&rfr_iscdi=true |