Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads

In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2018, Vol.91 (1), p.187-215
Hauptverfasser: Darabi, M., Ganesan, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue 1
container_start_page 187
container_title Nonlinear dynamics
container_volume 91
creator Darabi, M.
Ganesan, R.
description In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large deflection plate equations of motion are solved by using Galerkin’s technique that leads to a system of nonlinear Mathieu-Hill equations. Dynamically unstable regions, and both stable- and unstable-solution amplitudes of the steady-state vibrations are obtained by applying the Bolotin’s method. The nonlinear dynamic stability characteristics of both antisymmetric and symmetric cross-ply laminates with different lamination schemes are examined. A detailed parametric study is conducted to examine and compare the effects of the orthotropy, magnitude of both tensile and compressive longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness ratios, and in-plane transverse wave number on the parametric resonance particularly the steady-state vibrations amplitude. The present results show good agreement with that available in the literature.
doi_str_mv 10.1007/s11071-017-3863-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259447124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1981174115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-3b2001fb242b242ab5bb0079a2999380c91e6ed0185637505d8d3f0bd48db0a53</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouD4-gLeA5-hMkm6bo4gvEL0oeAtJk2qWblKT7mG_va3rwYsehoH5P2B-hJwhXCBAfVkQoUYGWDPRLAVTe2SBVS0YX6q3fbIAxSUDBW-H5KiUFQAIDs2CxKcU-xC9ydRto1mHloZYRmNDH8YtNdH02xIKTR3tJzWa0TvapvWQShg9HT9CpEM_XQstG7vy7ayPiQ4-h-S-29ikR0_7ZFw5IQed6Ys__dnH5PX25uX6nj0-3z1cXz2yVkg5MmE5AHaWSz6PsZW105fKcKWUaKBV6JfeATbVUtQVVK5xogPrZOMsmEock_Nd75DT58aXUa_SJk_PFM15paSskcv_XKgaxFoizl24c7U5lZJ9p4cc1iZvNYKe4esdfD3B1zN8raYM32XK5I3vPv9q_jP0BcJOh58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259447124</pqid></control><display><type>article</type><title>Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads</title><source>SpringerLink Journals</source><creator>Darabi, M. ; Ganesan, R.</creator><creatorcontrib>Darabi, M. ; Ganesan, R.</creatorcontrib><description>In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large deflection plate equations of motion are solved by using Galerkin’s technique that leads to a system of nonlinear Mathieu-Hill equations. Dynamically unstable regions, and both stable- and unstable-solution amplitudes of the steady-state vibrations are obtained by applying the Bolotin’s method. The nonlinear dynamic stability characteristics of both antisymmetric and symmetric cross-ply laminates with different lamination schemes are examined. A detailed parametric study is conducted to examine and compare the effects of the orthotropy, magnitude of both tensile and compressive longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness ratios, and in-plane transverse wave number on the parametric resonance particularly the steady-state vibrations amplitude. The present results show good agreement with that available in the literature.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-017-3863-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amplitudes ; Aspect ratio ; Automotive Engineering ; Classical Mechanics ; Composite structures ; Control ; Dynamic stability ; Dynamical Systems ; Engineering ; Equations of motion ; Galerkin method ; Geometric nonlinearity ; Laminates ; Mathematical analysis ; Mechanical Engineering ; Nonlinear analysis ; Nonlinear dynamics ; Nonlinear equations ; Original Paper ; Stability analysis ; Steady state ; Thin plates ; Transverse waves ; Vibration</subject><ispartof>Nonlinear dynamics, 2018, Vol.91 (1), p.187-215</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-3b2001fb242b242ab5bb0079a2999380c91e6ed0185637505d8d3f0bd48db0a53</citedby><cites>FETCH-LOGICAL-c344t-3b2001fb242b242ab5bb0079a2999380c91e6ed0185637505d8d3f0bd48db0a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-017-3863-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-017-3863-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Darabi, M.</creatorcontrib><creatorcontrib>Ganesan, R.</creatorcontrib><title>Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large deflection plate equations of motion are solved by using Galerkin’s technique that leads to a system of nonlinear Mathieu-Hill equations. Dynamically unstable regions, and both stable- and unstable-solution amplitudes of the steady-state vibrations are obtained by applying the Bolotin’s method. The nonlinear dynamic stability characteristics of both antisymmetric and symmetric cross-ply laminates with different lamination schemes are examined. A detailed parametric study is conducted to examine and compare the effects of the orthotropy, magnitude of both tensile and compressive longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness ratios, and in-plane transverse wave number on the parametric resonance particularly the steady-state vibrations amplitude. The present results show good agreement with that available in the literature.</description><subject>Amplitudes</subject><subject>Aspect ratio</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Composite structures</subject><subject>Control</subject><subject>Dynamic stability</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Galerkin method</subject><subject>Geometric nonlinearity</subject><subject>Laminates</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Nonlinear analysis</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear equations</subject><subject>Original Paper</subject><subject>Stability analysis</subject><subject>Steady state</subject><subject>Thin plates</subject><subject>Transverse waves</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLxDAQx4MouD4-gLeA5-hMkm6bo4gvEL0oeAtJk2qWblKT7mG_va3rwYsehoH5P2B-hJwhXCBAfVkQoUYGWDPRLAVTe2SBVS0YX6q3fbIAxSUDBW-H5KiUFQAIDs2CxKcU-xC9ydRto1mHloZYRmNDH8YtNdH02xIKTR3tJzWa0TvapvWQShg9HT9CpEM_XQstG7vy7ayPiQ4-h-S-29ikR0_7ZFw5IQed6Ys__dnH5PX25uX6nj0-3z1cXz2yVkg5MmE5AHaWSz6PsZW105fKcKWUaKBV6JfeATbVUtQVVK5xogPrZOMsmEock_Nd75DT58aXUa_SJk_PFM15paSskcv_XKgaxFoizl24c7U5lZJ9p4cc1iZvNYKe4esdfD3B1zN8raYM32XK5I3vPv9q_jP0BcJOh58</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Darabi, M.</creator><creator>Ganesan, R.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2018</creationdate><title>Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads</title><author>Darabi, M. ; Ganesan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-3b2001fb242b242ab5bb0079a2999380c91e6ed0185637505d8d3f0bd48db0a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplitudes</topic><topic>Aspect ratio</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Composite structures</topic><topic>Control</topic><topic>Dynamic stability</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Galerkin method</topic><topic>Geometric nonlinearity</topic><topic>Laminates</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Nonlinear analysis</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear equations</topic><topic>Original Paper</topic><topic>Stability analysis</topic><topic>Steady state</topic><topic>Thin plates</topic><topic>Transverse waves</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darabi, M.</creatorcontrib><creatorcontrib>Ganesan, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darabi, M.</au><au>Ganesan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2018</date><risdate>2018</risdate><volume>91</volume><issue>1</issue><spage>187</spage><epage>215</epage><pages>187-215</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large deflection plate equations of motion are solved by using Galerkin’s technique that leads to a system of nonlinear Mathieu-Hill equations. Dynamically unstable regions, and both stable- and unstable-solution amplitudes of the steady-state vibrations are obtained by applying the Bolotin’s method. The nonlinear dynamic stability characteristics of both antisymmetric and symmetric cross-ply laminates with different lamination schemes are examined. A detailed parametric study is conducted to examine and compare the effects of the orthotropy, magnitude of both tensile and compressive longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness ratios, and in-plane transverse wave number on the parametric resonance particularly the steady-state vibrations amplitude. The present results show good agreement with that available in the literature.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-017-3863-9</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2018, Vol.91 (1), p.187-215
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259447124
source SpringerLink Journals
subjects Amplitudes
Aspect ratio
Automotive Engineering
Classical Mechanics
Composite structures
Control
Dynamic stability
Dynamical Systems
Engineering
Equations of motion
Galerkin method
Geometric nonlinearity
Laminates
Mathematical analysis
Mechanical Engineering
Nonlinear analysis
Nonlinear dynamics
Nonlinear equations
Original Paper
Stability analysis
Steady state
Thin plates
Transverse waves
Vibration
title Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20instability%20analysis%20of%20laminated%20composite%20thin%20plates%20subjected%20to%20periodic%20in-plane%20loads&rft.jtitle=Nonlinear%20dynamics&rft.au=Darabi,%20M.&rft.date=2018&rft.volume=91&rft.issue=1&rft.spage=187&rft.epage=215&rft.pages=187-215&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-017-3863-9&rft_dat=%3Cproquest_cross%3E1981174115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259447124&rft_id=info:pmid/&rfr_iscdi=true