Globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching
The problem of globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is studied in this paper. By using the Lyapunov–Krasovskii method and the stochastic analysis approach, a sufficient condition to ensure globally expo...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2012-11, Vol.70 (3), p.2107-2116 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2116 |
---|---|
container_issue | 3 |
container_start_page | 2107 |
container_title | Nonlinear dynamics |
container_volume | 70 |
creator | Gao, Yan Zhou, Wuneng Ji, Chuan Tong, Dongbing Fang, Jian’an |
description | The problem of globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is studied in this paper. By using the Lyapunov–Krasovskii method and the stochastic analysis approach, a sufficient condition to ensure globally exponential stability for the stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is derived. Finally, a numerical example is given to illustrate the effectiveness of the result proposed in this paper. |
doi_str_mv | 10.1007/s11071-012-0603-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259447016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259447016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fbfc99bb08e2d638cc7b67296434fd13a5ce0b4c34a12c6ccb758bbb55ee34363</originalsourceid><addsrcrecordid>eNp1kMtKBDEURIMoOI5-gLuA6-hN0o_ppYgvGHGj4C4k6fRMNCZtklbbD_C77WEEV66KW5yqC4XQMYVTClCfJUqhpgQoI1ABJ187aEbLmhNWNU-7aAYNKwg08LSPDlJ6BgDOYDFD39cuKOnciM1nH7zx2UqHU5bKOptHHLrpCHotU7YaezPkKB3JY29wa5wcTbsxJ2-S_BHiS8IfNq-xfe0Hl-y7wb2JeYhKZht8wtK3-E7Gl_BupcdpYvXa-tUh2uukS-boV-fo8ery4eKGLO-vby_Ol0RzWmXSqU43jVKwMKyt-ELrWlU1a6qCF11LuSy1AVVoXkjKdKW1qsuFUqosjeEFr_gcnWx7-xjeBpOyeA5D9NNLwVjZFEUNdEPRLaVjSCmaTvTRvso4CgpiM7fYzi2mucVmbvE1Zdg2kybWr0z8a_4_9ANlGIhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259447016</pqid></control><display><type>article</type><title>Globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Yan ; Zhou, Wuneng ; Ji, Chuan ; Tong, Dongbing ; Fang, Jian’an</creator><creatorcontrib>Gao, Yan ; Zhou, Wuneng ; Ji, Chuan ; Tong, Dongbing ; Fang, Jian’an</creatorcontrib><description>The problem of globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is studied in this paper. By using the Lyapunov–Krasovskii method and the stochastic analysis approach, a sufficient condition to ensure globally exponential stability for the stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is derived. Finally, a numerical example is given to illustrate the effectiveness of the result proposed in this paper.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-012-0603-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Control systems ; Dynamical Systems ; Engineering ; Markov processes ; Mechanical Engineering ; Neural networks ; Original Paper ; Stability analysis ; Switching theory ; Vibration</subject><ispartof>Nonlinear dynamics, 2012-11, Vol.70 (3), p.2107-2116</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fbfc99bb08e2d638cc7b67296434fd13a5ce0b4c34a12c6ccb758bbb55ee34363</citedby><cites>FETCH-LOGICAL-c316t-fbfc99bb08e2d638cc7b67296434fd13a5ce0b4c34a12c6ccb758bbb55ee34363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-012-0603-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-012-0603-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Zhou, Wuneng</creatorcontrib><creatorcontrib>Ji, Chuan</creatorcontrib><creatorcontrib>Tong, Dongbing</creatorcontrib><creatorcontrib>Fang, Jian’an</creatorcontrib><title>Globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>The problem of globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is studied in this paper. By using the Lyapunov–Krasovskii method and the stochastic analysis approach, a sufficient condition to ensure globally exponential stability for the stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is derived. Finally, a numerical example is given to illustrate the effectiveness of the result proposed in this paper.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control systems</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Markov processes</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Stability analysis</subject><subject>Switching theory</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMtKBDEURIMoOI5-gLuA6-hN0o_ppYgvGHGj4C4k6fRMNCZtklbbD_C77WEEV66KW5yqC4XQMYVTClCfJUqhpgQoI1ABJ187aEbLmhNWNU-7aAYNKwg08LSPDlJ6BgDOYDFD39cuKOnciM1nH7zx2UqHU5bKOptHHLrpCHotU7YaezPkKB3JY29wa5wcTbsxJ2-S_BHiS8IfNq-xfe0Hl-y7wb2JeYhKZht8wtK3-E7Gl_BupcdpYvXa-tUh2uukS-boV-fo8ery4eKGLO-vby_Ol0RzWmXSqU43jVKwMKyt-ELrWlU1a6qCF11LuSy1AVVoXkjKdKW1qsuFUqosjeEFr_gcnWx7-xjeBpOyeA5D9NNLwVjZFEUNdEPRLaVjSCmaTvTRvso4CgpiM7fYzi2mucVmbvE1Zdg2kybWr0z8a_4_9ANlGIhA</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Gao, Yan</creator><creator>Zhou, Wuneng</creator><creator>Ji, Chuan</creator><creator>Tong, Dongbing</creator><creator>Fang, Jian’an</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121101</creationdate><title>Globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching</title><author>Gao, Yan ; Zhou, Wuneng ; Ji, Chuan ; Tong, Dongbing ; Fang, Jian’an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fbfc99bb08e2d638cc7b67296434fd13a5ce0b4c34a12c6ccb758bbb55ee34363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control systems</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Markov processes</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Stability analysis</topic><topic>Switching theory</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Zhou, Wuneng</creatorcontrib><creatorcontrib>Ji, Chuan</creatorcontrib><creatorcontrib>Tong, Dongbing</creatorcontrib><creatorcontrib>Fang, Jian’an</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yan</au><au>Zhou, Wuneng</au><au>Ji, Chuan</au><au>Tong, Dongbing</au><au>Fang, Jian’an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>70</volume><issue>3</issue><spage>2107</spage><epage>2116</epage><pages>2107-2116</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>The problem of globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is studied in this paper. By using the Lyapunov–Krasovskii method and the stochastic analysis approach, a sufficient condition to ensure globally exponential stability for the stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is derived. Finally, a numerical example is given to illustrate the effectiveness of the result proposed in this paper.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-012-0603-z</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2012-11, Vol.70 (3), p.2107-2116 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2259447016 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automotive Engineering Classical Mechanics Control Control systems Dynamical Systems Engineering Markov processes Mechanical Engineering Neural networks Original Paper Stability analysis Switching theory Vibration |
title | Globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Globally%20exponential%20stability%20of%20stochastic%20neutral-type%20delayed%20neural%20networks%20with%20impulsive%20perturbations%20and%20Markovian%20switching&rft.jtitle=Nonlinear%20dynamics&rft.au=Gao,%20Yan&rft.date=2012-11-01&rft.volume=70&rft.issue=3&rft.spage=2107&rft.epage=2116&rft.pages=2107-2116&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-012-0603-z&rft_dat=%3Cproquest_cross%3E2259447016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259447016&rft_id=info:pmid/&rfr_iscdi=true |