Globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching

The problem of globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is studied in this paper. By using the Lyapunov–Krasovskii method and the stochastic analysis approach, a sufficient condition to ensure globally expo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2012-11, Vol.70 (3), p.2107-2116
Hauptverfasser: Gao, Yan, Zhou, Wuneng, Ji, Chuan, Tong, Dongbing, Fang, Jian’an
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2116
container_issue 3
container_start_page 2107
container_title Nonlinear dynamics
container_volume 70
creator Gao, Yan
Zhou, Wuneng
Ji, Chuan
Tong, Dongbing
Fang, Jian’an
description The problem of globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is studied in this paper. By using the Lyapunov–Krasovskii method and the stochastic analysis approach, a sufficient condition to ensure globally exponential stability for the stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is derived. Finally, a numerical example is given to illustrate the effectiveness of the result proposed in this paper.
doi_str_mv 10.1007/s11071-012-0603-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259447016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259447016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fbfc99bb08e2d638cc7b67296434fd13a5ce0b4c34a12c6ccb758bbb55ee34363</originalsourceid><addsrcrecordid>eNp1kMtKBDEURIMoOI5-gLuA6-hN0o_ppYgvGHGj4C4k6fRMNCZtklbbD_C77WEEV66KW5yqC4XQMYVTClCfJUqhpgQoI1ABJ187aEbLmhNWNU-7aAYNKwg08LSPDlJ6BgDOYDFD39cuKOnciM1nH7zx2UqHU5bKOptHHLrpCHotU7YaezPkKB3JY29wa5wcTbsxJ2-S_BHiS8IfNq-xfe0Hl-y7wb2JeYhKZht8wtK3-E7Gl_BupcdpYvXa-tUh2uukS-boV-fo8ery4eKGLO-vby_Ol0RzWmXSqU43jVKwMKyt-ELrWlU1a6qCF11LuSy1AVVoXkjKdKW1qsuFUqosjeEFr_gcnWx7-xjeBpOyeA5D9NNLwVjZFEUNdEPRLaVjSCmaTvTRvso4CgpiM7fYzi2mucVmbvE1Zdg2kybWr0z8a_4_9ANlGIhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259447016</pqid></control><display><type>article</type><title>Globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Yan ; Zhou, Wuneng ; Ji, Chuan ; Tong, Dongbing ; Fang, Jian’an</creator><creatorcontrib>Gao, Yan ; Zhou, Wuneng ; Ji, Chuan ; Tong, Dongbing ; Fang, Jian’an</creatorcontrib><description>The problem of globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is studied in this paper. By using the Lyapunov–Krasovskii method and the stochastic analysis approach, a sufficient condition to ensure globally exponential stability for the stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is derived. Finally, a numerical example is given to illustrate the effectiveness of the result proposed in this paper.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-012-0603-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Control systems ; Dynamical Systems ; Engineering ; Markov processes ; Mechanical Engineering ; Neural networks ; Original Paper ; Stability analysis ; Switching theory ; Vibration</subject><ispartof>Nonlinear dynamics, 2012-11, Vol.70 (3), p.2107-2116</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fbfc99bb08e2d638cc7b67296434fd13a5ce0b4c34a12c6ccb758bbb55ee34363</citedby><cites>FETCH-LOGICAL-c316t-fbfc99bb08e2d638cc7b67296434fd13a5ce0b4c34a12c6ccb758bbb55ee34363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-012-0603-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-012-0603-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Zhou, Wuneng</creatorcontrib><creatorcontrib>Ji, Chuan</creatorcontrib><creatorcontrib>Tong, Dongbing</creatorcontrib><creatorcontrib>Fang, Jian’an</creatorcontrib><title>Globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>The problem of globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is studied in this paper. By using the Lyapunov–Krasovskii method and the stochastic analysis approach, a sufficient condition to ensure globally exponential stability for the stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is derived. Finally, a numerical example is given to illustrate the effectiveness of the result proposed in this paper.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control systems</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Markov processes</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Stability analysis</subject><subject>Switching theory</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMtKBDEURIMoOI5-gLuA6-hN0o_ppYgvGHGj4C4k6fRMNCZtklbbD_C77WEEV66KW5yqC4XQMYVTClCfJUqhpgQoI1ABJ187aEbLmhNWNU-7aAYNKwg08LSPDlJ6BgDOYDFD39cuKOnciM1nH7zx2UqHU5bKOptHHLrpCHotU7YaezPkKB3JY29wa5wcTbsxJ2-S_BHiS8IfNq-xfe0Hl-y7wb2JeYhKZht8wtK3-E7Gl_BupcdpYvXa-tUh2uukS-boV-fo8ery4eKGLO-vby_Ol0RzWmXSqU43jVKwMKyt-ELrWlU1a6qCF11LuSy1AVVoXkjKdKW1qsuFUqosjeEFr_gcnWx7-xjeBpOyeA5D9NNLwVjZFEUNdEPRLaVjSCmaTvTRvso4CgpiM7fYzi2mucVmbvE1Zdg2kybWr0z8a_4_9ANlGIhA</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Gao, Yan</creator><creator>Zhou, Wuneng</creator><creator>Ji, Chuan</creator><creator>Tong, Dongbing</creator><creator>Fang, Jian’an</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121101</creationdate><title>Globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching</title><author>Gao, Yan ; Zhou, Wuneng ; Ji, Chuan ; Tong, Dongbing ; Fang, Jian’an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fbfc99bb08e2d638cc7b67296434fd13a5ce0b4c34a12c6ccb758bbb55ee34363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control systems</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Markov processes</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Stability analysis</topic><topic>Switching theory</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Zhou, Wuneng</creatorcontrib><creatorcontrib>Ji, Chuan</creatorcontrib><creatorcontrib>Tong, Dongbing</creatorcontrib><creatorcontrib>Fang, Jian’an</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yan</au><au>Zhou, Wuneng</au><au>Ji, Chuan</au><au>Tong, Dongbing</au><au>Fang, Jian’an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>70</volume><issue>3</issue><spage>2107</spage><epage>2116</epage><pages>2107-2116</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>The problem of globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is studied in this paper. By using the Lyapunov–Krasovskii method and the stochastic analysis approach, a sufficient condition to ensure globally exponential stability for the stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching is derived. Finally, a numerical example is given to illustrate the effectiveness of the result proposed in this paper.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-012-0603-z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2012-11, Vol.70 (3), p.2107-2116
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259447016
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Classical Mechanics
Control
Control systems
Dynamical Systems
Engineering
Markov processes
Mechanical Engineering
Neural networks
Original Paper
Stability analysis
Switching theory
Vibration
title Globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and Markovian switching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Globally%20exponential%20stability%20of%20stochastic%20neutral-type%20delayed%20neural%20networks%20with%20impulsive%20perturbations%20and%20Markovian%20switching&rft.jtitle=Nonlinear%20dynamics&rft.au=Gao,%20Yan&rft.date=2012-11-01&rft.volume=70&rft.issue=3&rft.spage=2107&rft.epage=2116&rft.pages=2107-2116&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-012-0603-z&rft_dat=%3Cproquest_cross%3E2259447016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259447016&rft_id=info:pmid/&rfr_iscdi=true