Stability aspects of the Hayes delay differential equation with scalable hysteresis
Hysteresis models are strongly nonlinear, with slope discontinuities at every load reversal. Stability analysis of hysteretically damped systems is therefore challenging. Recently, a scalable hysteresis model has been reported, motivated by materials with distributed microscopic frictional cracks. I...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2018-08, Vol.93 (3), p.1377-1393 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1393 |
---|---|
container_issue | 3 |
container_start_page | 1377 |
container_title | Nonlinear dynamics |
container_volume | 93 |
creator | Balija, Santhosh Kumar Biswas, Saurabh Chatterjee, Anindya |
description | Hysteresis models are strongly nonlinear, with slope discontinuities at every load reversal. Stability analysis of hysteretically damped systems is therefore challenging. Recently, a scalable hysteresis model has been reported, motivated by materials with distributed microscopic frictional cracks. In a scalable system, if
x
(
t
) is a solution, then so is
α
x
(
t
)
for any
α
>
0
. Scalability in the hysteretic damping allows us to study interesting stability aspects of otherwise linear dynamic systems. In this paper, we study the first-order Hayes delay differential equation with scalable hysteresis. Stability of this system can be examined on a two-dimensional parameter plane. We use Galerkin projection to convert the Hayes delay differential equation with hysteresis to a system of ODEs. We then use numerically obtained Lyapunov-like exponents for stability analysis. Some stability boundaries in the parameter plane contain periodic solutions, which we compute numerically by continuation and also approximately using harmonic balance and related approximations. There is an extended region in the parameter plane for which nonzero equilibria exist (like sticking solutions in scalar dry friction), and infinitesimal stability analysis thereof leads to a pseudolinear delay differential equation. On the stability boundary of the pseudolinear equation, there are solutions with linear drift in one state and periodicity in all other states. Stability regions of the original and the pseudolinearized equation overlap, but are not identical. The reason is explained in terms of differences in sets of initial conditions used for computing Lyapunov-like exponents. |
doi_str_mv | 10.1007/s11071-018-4266-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259434844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063318560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-1e242a2661c8ad7aeb6dce48454b9f064e59594665ed98bfcc038bd8bd3630e63</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Bz9XJR9P2KIu6guBhFfYW0nTqZqntbpJF-u_NUsGTwsBcnued4SXkmsEtAyjuAmNQsAxYmUmuVMZPyIzlhci4qtanZAYVlxlUsD4nFyFsAUBwKGdktYqmdp2LIzVhhzYGOrQ0bpAuzYiBNtiZkTaubdFjH53pKO4PJrqhp18ubmiwpjN1h3QzhpiY4MIlOWtNF_DqZ8_J--PD22KZvbw-PS_uXzIrpIwZQy65Sc8yW5qmMFirxqIsZS7rqgUlMa_ySiqVY1OVdWstiLJu0gglAJWYk5spd-eH_QFD1Nvh4Pt0UnOeTJGy5L8UKCFYmStIFJso64cQPLZ6592n8aNmoI8N66lhnRrWx4Y1Tw6fnJDY_gP9b_Lf0jeawX4d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259434844</pqid></control><display><type>article</type><title>Stability aspects of the Hayes delay differential equation with scalable hysteresis</title><source>SpringerLink Journals</source><creator>Balija, Santhosh Kumar ; Biswas, Saurabh ; Chatterjee, Anindya</creator><creatorcontrib>Balija, Santhosh Kumar ; Biswas, Saurabh ; Chatterjee, Anindya</creatorcontrib><description>Hysteresis models are strongly nonlinear, with slope discontinuities at every load reversal. Stability analysis of hysteretically damped systems is therefore challenging. Recently, a scalable hysteresis model has been reported, motivated by materials with distributed microscopic frictional cracks. In a scalable system, if
x
(
t
) is a solution, then so is
α
x
(
t
)
for any
α
>
0
. Scalability in the hysteretic damping allows us to study interesting stability aspects of otherwise linear dynamic systems. In this paper, we study the first-order Hayes delay differential equation with scalable hysteresis. Stability of this system can be examined on a two-dimensional parameter plane. We use Galerkin projection to convert the Hayes delay differential equation with hysteresis to a system of ODEs. We then use numerically obtained Lyapunov-like exponents for stability analysis. Some stability boundaries in the parameter plane contain periodic solutions, which we compute numerically by continuation and also approximately using harmonic balance and related approximations. There is an extended region in the parameter plane for which nonzero equilibria exist (like sticking solutions in scalar dry friction), and infinitesimal stability analysis thereof leads to a pseudolinear delay differential equation. On the stability boundary of the pseudolinear equation, there are solutions with linear drift in one state and periodicity in all other states. Stability regions of the original and the pseudolinearized equation overlap, but are not identical. The reason is explained in terms of differences in sets of initial conditions used for computing Lyapunov-like exponents.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-018-4266-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Cracks ; Damping ; Delay ; Differential equations ; Dimensional stability ; Dry friction ; Dynamic stability ; Dynamical Systems ; Engineering ; Exponents ; Galerkin method ; Hysteresis models ; Initial conditions ; Mathematical models ; Mechanical Engineering ; Original Paper ; Parameters ; Periodic variations ; Slope stability ; Stability analysis ; Vibration</subject><ispartof>Nonlinear dynamics, 2018-08, Vol.93 (3), p.1377-1393</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-1e242a2661c8ad7aeb6dce48454b9f064e59594665ed98bfcc038bd8bd3630e63</citedby><cites>FETCH-LOGICAL-c344t-1e242a2661c8ad7aeb6dce48454b9f064e59594665ed98bfcc038bd8bd3630e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-018-4266-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-018-4266-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Balija, Santhosh Kumar</creatorcontrib><creatorcontrib>Biswas, Saurabh</creatorcontrib><creatorcontrib>Chatterjee, Anindya</creatorcontrib><title>Stability aspects of the Hayes delay differential equation with scalable hysteresis</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Hysteresis models are strongly nonlinear, with slope discontinuities at every load reversal. Stability analysis of hysteretically damped systems is therefore challenging. Recently, a scalable hysteresis model has been reported, motivated by materials with distributed microscopic frictional cracks. In a scalable system, if
x
(
t
) is a solution, then so is
α
x
(
t
)
for any
α
>
0
. Scalability in the hysteretic damping allows us to study interesting stability aspects of otherwise linear dynamic systems. In this paper, we study the first-order Hayes delay differential equation with scalable hysteresis. Stability of this system can be examined on a two-dimensional parameter plane. We use Galerkin projection to convert the Hayes delay differential equation with hysteresis to a system of ODEs. We then use numerically obtained Lyapunov-like exponents for stability analysis. Some stability boundaries in the parameter plane contain periodic solutions, which we compute numerically by continuation and also approximately using harmonic balance and related approximations. There is an extended region in the parameter plane for which nonzero equilibria exist (like sticking solutions in scalar dry friction), and infinitesimal stability analysis thereof leads to a pseudolinear delay differential equation. On the stability boundary of the pseudolinear equation, there are solutions with linear drift in one state and periodicity in all other states. Stability regions of the original and the pseudolinearized equation overlap, but are not identical. The reason is explained in terms of differences in sets of initial conditions used for computing Lyapunov-like exponents.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Cracks</subject><subject>Damping</subject><subject>Delay</subject><subject>Differential equations</subject><subject>Dimensional stability</subject><subject>Dry friction</subject><subject>Dynamic stability</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Exponents</subject><subject>Galerkin method</subject><subject>Hysteresis models</subject><subject>Initial conditions</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Periodic variations</subject><subject>Slope stability</subject><subject>Stability analysis</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AG8Bz9XJR9P2KIu6guBhFfYW0nTqZqntbpJF-u_NUsGTwsBcnued4SXkmsEtAyjuAmNQsAxYmUmuVMZPyIzlhci4qtanZAYVlxlUsD4nFyFsAUBwKGdktYqmdp2LIzVhhzYGOrQ0bpAuzYiBNtiZkTaubdFjH53pKO4PJrqhp18ubmiwpjN1h3QzhpiY4MIlOWtNF_DqZ8_J--PD22KZvbw-PS_uXzIrpIwZQy65Sc8yW5qmMFirxqIsZS7rqgUlMa_ySiqVY1OVdWstiLJu0gglAJWYk5spd-eH_QFD1Nvh4Pt0UnOeTJGy5L8UKCFYmStIFJso64cQPLZ6592n8aNmoI8N66lhnRrWx4Y1Tw6fnJDY_gP9b_Lf0jeawX4d</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Balija, Santhosh Kumar</creator><creator>Biswas, Saurabh</creator><creator>Chatterjee, Anindya</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20180801</creationdate><title>Stability aspects of the Hayes delay differential equation with scalable hysteresis</title><author>Balija, Santhosh Kumar ; Biswas, Saurabh ; Chatterjee, Anindya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-1e242a2661c8ad7aeb6dce48454b9f064e59594665ed98bfcc038bd8bd3630e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Cracks</topic><topic>Damping</topic><topic>Delay</topic><topic>Differential equations</topic><topic>Dimensional stability</topic><topic>Dry friction</topic><topic>Dynamic stability</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Exponents</topic><topic>Galerkin method</topic><topic>Hysteresis models</topic><topic>Initial conditions</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Periodic variations</topic><topic>Slope stability</topic><topic>Stability analysis</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balija, Santhosh Kumar</creatorcontrib><creatorcontrib>Biswas, Saurabh</creatorcontrib><creatorcontrib>Chatterjee, Anindya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balija, Santhosh Kumar</au><au>Biswas, Saurabh</au><au>Chatterjee, Anindya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability aspects of the Hayes delay differential equation with scalable hysteresis</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>93</volume><issue>3</issue><spage>1377</spage><epage>1393</epage><pages>1377-1393</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Hysteresis models are strongly nonlinear, with slope discontinuities at every load reversal. Stability analysis of hysteretically damped systems is therefore challenging. Recently, a scalable hysteresis model has been reported, motivated by materials with distributed microscopic frictional cracks. In a scalable system, if
x
(
t
) is a solution, then so is
α
x
(
t
)
for any
α
>
0
. Scalability in the hysteretic damping allows us to study interesting stability aspects of otherwise linear dynamic systems. In this paper, we study the first-order Hayes delay differential equation with scalable hysteresis. Stability of this system can be examined on a two-dimensional parameter plane. We use Galerkin projection to convert the Hayes delay differential equation with hysteresis to a system of ODEs. We then use numerically obtained Lyapunov-like exponents for stability analysis. Some stability boundaries in the parameter plane contain periodic solutions, which we compute numerically by continuation and also approximately using harmonic balance and related approximations. There is an extended region in the parameter plane for which nonzero equilibria exist (like sticking solutions in scalar dry friction), and infinitesimal stability analysis thereof leads to a pseudolinear delay differential equation. On the stability boundary of the pseudolinear equation, there are solutions with linear drift in one state and periodicity in all other states. Stability regions of the original and the pseudolinearized equation overlap, but are not identical. The reason is explained in terms of differences in sets of initial conditions used for computing Lyapunov-like exponents.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-018-4266-2</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2018-08, Vol.93 (3), p.1377-1393 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2259434844 |
source | SpringerLink Journals |
subjects | Automotive Engineering Classical Mechanics Control Cracks Damping Delay Differential equations Dimensional stability Dry friction Dynamic stability Dynamical Systems Engineering Exponents Galerkin method Hysteresis models Initial conditions Mathematical models Mechanical Engineering Original Paper Parameters Periodic variations Slope stability Stability analysis Vibration |
title | Stability aspects of the Hayes delay differential equation with scalable hysteresis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20aspects%20of%20the%20Hayes%20delay%20differential%20equation%20with%20scalable%20hysteresis&rft.jtitle=Nonlinear%20dynamics&rft.au=Balija,%20Santhosh%20Kumar&rft.date=2018-08-01&rft.volume=93&rft.issue=3&rft.spage=1377&rft.epage=1393&rft.pages=1377-1393&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-018-4266-2&rft_dat=%3Cproquest_cross%3E2063318560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259434844&rft_id=info:pmid/&rfr_iscdi=true |