Stability and stabilization of a class of fractional-order nonlinear systems for \[\varvec{0<}\,{\varvec{\alpha }} \,\varvec{< 2}\]
This paper investigates the stability and stabilization problem of fractional-order nonlinear systems for \[0
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2017-04, Vol.88 (2), p.973-984 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 984 |
---|---|
container_issue | 2 |
container_start_page | 973 |
container_title | Nonlinear dynamics |
container_volume | 88 |
creator | Huang, Sunhua Wang, Bin |
description | This paper investigates the stability and stabilization problem of fractional-order nonlinear systems for \[0 |
doi_str_mv | 10.1007/s11071-016-3288-x |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2259432459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259432459</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-50f850a8a47328c9e580e105d2aa1032893c97b1921202bd064da2d5af36dd7c3</originalsourceid><addsrcrecordid>eNo1j01LAzEURYMoWKs_wF3AbaMvyWQmgW6k-AUFFyoUHCmvkwxOGSc1mRZrmZV_3Jbq6t57FhcOIeccLjlAdhU5h4wz4CmTQmv2dUB6XGWSidRMDkkPjEgYGJgck5MY5wAgBege-XlqcVbVVbum2Fga9-sb28o31JcUaVFjjLtaBix2GGvmg3WBNr6pq8ZhoHEdW_cRaekDzV_zFYaVKzYw7PLB5n_lWC_ekXYdzQf_bEhFl7-dkqMS6-jO_rJPXm5vnkf3bPx49zC6HrMF57JlCkqtADUm2VaxME5pcByUFYh8q6ONLEw240ZwAWJmIU0sCquwlKm1WSH75GL_uwj-c-liO537Zdj6xKkQyiRSJMrIX5HwZJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259432459</pqid></control><display><type>article</type><title>Stability and stabilization of a class of fractional-order nonlinear systems for \[\varvec{0<}\,{\varvec{\alpha }} \,\varvec{< 2}\]</title><source>SpringerNature Journals</source><creator>Huang, Sunhua ; Wang, Bin</creator><creatorcontrib>Huang, Sunhua ; Wang, Bin</creatorcontrib><description>This paper investigates the stability and stabilization problem of fractional-order nonlinear systems for \[0<\alpha <2\]. Based on the fractional-order Lyapunov stability theorem, S-procedure and Mittag–Leffler function, the stability conditions that ensure local stability and stabilization of a class of fractional-order nonlinear systems under the Caputo derivative with \[0<\alpha <2\] are proposed. Finally, typical instances, including the fractional-order nonlinear Chen system and the fractional-order nonlinear Lorenz system, are implemented to demonstrate the feasibility and validity of the proposed method.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-016-3288-x</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Lorenz system ; Nonlinear systems ; Stability ; Stabilization</subject><ispartof>Nonlinear dynamics, 2017-04, Vol.88 (2), p.973-984</ispartof><rights>Nonlinear Dynamics is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Huang, Sunhua</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><title>Stability and stabilization of a class of fractional-order nonlinear systems for \[\varvec{0<}\,{\varvec{\alpha }} \,\varvec{< 2}\]</title><title>Nonlinear dynamics</title><description>This paper investigates the stability and stabilization problem of fractional-order nonlinear systems for \[0<\alpha <2\]. Based on the fractional-order Lyapunov stability theorem, S-procedure and Mittag–Leffler function, the stability conditions that ensure local stability and stabilization of a class of fractional-order nonlinear systems under the Caputo derivative with \[0<\alpha <2\] are proposed. Finally, typical instances, including the fractional-order nonlinear Chen system and the fractional-order nonlinear Lorenz system, are implemented to demonstrate the feasibility and validity of the proposed method.</description><subject>Lorenz system</subject><subject>Nonlinear systems</subject><subject>Stability</subject><subject>Stabilization</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo1j01LAzEURYMoWKs_wF3AbaMvyWQmgW6k-AUFFyoUHCmvkwxOGSc1mRZrmZV_3Jbq6t57FhcOIeccLjlAdhU5h4wz4CmTQmv2dUB6XGWSidRMDkkPjEgYGJgck5MY5wAgBege-XlqcVbVVbum2Fga9-sb28o31JcUaVFjjLtaBix2GGvmg3WBNr6pq8ZhoHEdW_cRaekDzV_zFYaVKzYw7PLB5n_lWC_ekXYdzQf_bEhFl7-dkqMS6-jO_rJPXm5vnkf3bPx49zC6HrMF57JlCkqtADUm2VaxME5pcByUFYh8q6ONLEw240ZwAWJmIU0sCquwlKm1WSH75GL_uwj-c-liO537Zdj6xKkQyiRSJMrIX5HwZJw</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Huang, Sunhua</creator><creator>Wang, Bin</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170401</creationdate><title>Stability and stabilization of a class of fractional-order nonlinear systems for \[\varvec{0<}\,{\varvec{\alpha }} \,\varvec{< 2}\]</title><author>Huang, Sunhua ; Wang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-50f850a8a47328c9e580e105d2aa1032893c97b1921202bd064da2d5af36dd7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Lorenz system</topic><topic>Nonlinear systems</topic><topic>Stability</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Sunhua</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Sunhua</au><au>Wang, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and stabilization of a class of fractional-order nonlinear systems for \[\varvec{0<}\,{\varvec{\alpha }} \,\varvec{< 2}\]</atitle><jtitle>Nonlinear dynamics</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>88</volume><issue>2</issue><spage>973</spage><epage>984</epage><pages>973-984</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper investigates the stability and stabilization problem of fractional-order nonlinear systems for \[0<\alpha <2\]. Based on the fractional-order Lyapunov stability theorem, S-procedure and Mittag–Leffler function, the stability conditions that ensure local stability and stabilization of a class of fractional-order nonlinear systems under the Caputo derivative with \[0<\alpha <2\] are proposed. Finally, typical instances, including the fractional-order nonlinear Chen system and the fractional-order nonlinear Lorenz system, are implemented to demonstrate the feasibility and validity of the proposed method.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11071-016-3288-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2017-04, Vol.88 (2), p.973-984 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2259432459 |
source | SpringerNature Journals |
subjects | Lorenz system Nonlinear systems Stability Stabilization |
title | Stability and stabilization of a class of fractional-order nonlinear systems for \[\varvec{0<}\,{\varvec{\alpha }} \,\varvec{< 2}\] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20stabilization%20of%20a%20class%20of%20fractional-order%20nonlinear%20systems%20for%20%5C%5B%5Cvarvec%7B0%3C%7D%5C,%7B%5Cvarvec%7B%5Calpha%20%7D%7D%20%5C,%5Cvarvec%7B%3C%202%7D%5C%5D&rft.jtitle=Nonlinear%20dynamics&rft.au=Huang,%20Sunhua&rft.date=2017-04-01&rft.volume=88&rft.issue=2&rft.spage=973&rft.epage=984&rft.pages=973-984&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-016-3288-x&rft_dat=%3Cproquest%3E2259432459%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259432459&rft_id=info:pmid/&rfr_iscdi=true |