Untangling origin-destination flows in geographic information systems
Origin–destination flow maps are a popular option to visualize connections between different spatial locations, where specific routes between the origin and destination are unknown or irrelevant. Visualizing origin–destination flows is challenging mainly due to visual clutter which appears quickly a...
Gespeichert in:
Veröffentlicht in: | Information visualization 2019-01, Vol.18 (1), p.153-172 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | 1 |
container_start_page | 153 |
container_title | Information visualization |
container_volume | 18 |
creator | Graser, Anita Schmidt, Johanna Roth, Florian Brändle, Norbert |
description | Origin–destination flow maps are a popular option to visualize connections between different spatial locations, where specific routes between the origin and destination are unknown or irrelevant. Visualizing origin–destination flows is challenging mainly due to visual clutter which appears quickly as data sets grow. Clutter reduction techniques are intensively explored in the information visualization and cartography domains. However, current automatic techniques for origin–destination flow visualization, such as edge bundling, are not available in geographic information systems which are widely used to visualize spatial data, such as origin–destination flows. In this article, we explore the applicability of edge bundling to spatial data sets and necessary adaptations under the constraints inherent to platform-independent geographic information system scripting environments. We propose (1) a new clustering technique for origin–destination flows that provides within-cluster consistency to speed up computations, (2) an edge bundling approach based on force-directed edge bundling employing matrix computations, (3) a new technique to determine the local strength of a bundle leveraging spatial indexes, and (4) a geographic information system–based technique to spatially offset bundles describing different flow directions. Finally, we evaluate our method by applying it to origin–destination flow data sets with a wide variety of different data characteristics. |
doi_str_mv | 10.1177/1473871617738122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259430586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1473871617738122</sage_id><sourcerecordid>2259430586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-ac3698670f213051b9cc0f703a91f99fceac9437afb729cba51b62c801dfa3973</originalsourceid><addsrcrecordid>eNp1UMFKAzEQDaJgrd49LniOTpLdzeYopVqh4MWeQzZN1pTdpCZbpH9vyoqC4GnezLz3ZngI3RK4J4TzB1Jy1nBSZ8waQukZmp1GuOG0PP_BpL5EVyntACgvQczQcuNH5bve-a4I0XXO461Jo_NqdMEXtg-fqXC-6Ezootq_O507G-Iw7dMxjWZI1-jCqj6Zm-86R5un5dtihdevzy-LxzXWDMSIlWa1aGoOlhIGFWmF1mA5MCWIFcJqo7QoGVe25VToVmVKTXUDZGsVE5zN0d3ku4_h45D_lLtwiD6flJRWWQpVU2cWTCwdQ0rRWLmPblDxKAnIU1jyb1hZgidJUp35Nf2X_wVUjWm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259430586</pqid></control><display><type>article</type><title>Untangling origin-destination flows in geographic information systems</title><source>SAGE Complete</source><creator>Graser, Anita ; Schmidt, Johanna ; Roth, Florian ; Brändle, Norbert</creator><creatorcontrib>Graser, Anita ; Schmidt, Johanna ; Roth, Florian ; Brändle, Norbert</creatorcontrib><description>Origin–destination flow maps are a popular option to visualize connections between different spatial locations, where specific routes between the origin and destination are unknown or irrelevant. Visualizing origin–destination flows is challenging mainly due to visual clutter which appears quickly as data sets grow. Clutter reduction techniques are intensively explored in the information visualization and cartography domains. However, current automatic techniques for origin–destination flow visualization, such as edge bundling, are not available in geographic information systems which are widely used to visualize spatial data, such as origin–destination flows. In this article, we explore the applicability of edge bundling to spatial data sets and necessary adaptations under the constraints inherent to platform-independent geographic information system scripting environments. We propose (1) a new clustering technique for origin–destination flows that provides within-cluster consistency to speed up computations, (2) an edge bundling approach based on force-directed edge bundling employing matrix computations, (3) a new technique to determine the local strength of a bundle leveraging spatial indexes, and (4) a geographic information system–based technique to spatially offset bundles describing different flow directions. Finally, we evaluate our method by applying it to origin–destination flow data sets with a wide variety of different data characteristics.</description><identifier>ISSN: 1473-8716</identifier><identifier>EISSN: 1473-8724</identifier><identifier>DOI: 10.1177/1473871617738122</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Bundling ; Cartography ; Clustering ; Clutter ; Datasets ; Domains ; Flow mapping ; Flow visualization ; Geographic information systems ; Scientific visualization ; Spatial data ; Visualization</subject><ispartof>Information visualization, 2019-01, Vol.18 (1), p.153-172</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-ac3698670f213051b9cc0f703a91f99fceac9437afb729cba51b62c801dfa3973</citedby><cites>FETCH-LOGICAL-c309t-ac3698670f213051b9cc0f703a91f99fceac9437afb729cba51b62c801dfa3973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1473871617738122$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1473871617738122$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21800,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Graser, Anita</creatorcontrib><creatorcontrib>Schmidt, Johanna</creatorcontrib><creatorcontrib>Roth, Florian</creatorcontrib><creatorcontrib>Brändle, Norbert</creatorcontrib><title>Untangling origin-destination flows in geographic information systems</title><title>Information visualization</title><description>Origin–destination flow maps are a popular option to visualize connections between different spatial locations, where specific routes between the origin and destination are unknown or irrelevant. Visualizing origin–destination flows is challenging mainly due to visual clutter which appears quickly as data sets grow. Clutter reduction techniques are intensively explored in the information visualization and cartography domains. However, current automatic techniques for origin–destination flow visualization, such as edge bundling, are not available in geographic information systems which are widely used to visualize spatial data, such as origin–destination flows. In this article, we explore the applicability of edge bundling to spatial data sets and necessary adaptations under the constraints inherent to platform-independent geographic information system scripting environments. We propose (1) a new clustering technique for origin–destination flows that provides within-cluster consistency to speed up computations, (2) an edge bundling approach based on force-directed edge bundling employing matrix computations, (3) a new technique to determine the local strength of a bundle leveraging spatial indexes, and (4) a geographic information system–based technique to spatially offset bundles describing different flow directions. Finally, we evaluate our method by applying it to origin–destination flow data sets with a wide variety of different data characteristics.</description><subject>Bundling</subject><subject>Cartography</subject><subject>Clustering</subject><subject>Clutter</subject><subject>Datasets</subject><subject>Domains</subject><subject>Flow mapping</subject><subject>Flow visualization</subject><subject>Geographic information systems</subject><subject>Scientific visualization</subject><subject>Spatial data</subject><subject>Visualization</subject><issn>1473-8716</issn><issn>1473-8724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKAzEQDaJgrd49LniOTpLdzeYopVqh4MWeQzZN1pTdpCZbpH9vyoqC4GnezLz3ZngI3RK4J4TzB1Jy1nBSZ8waQukZmp1GuOG0PP_BpL5EVyntACgvQczQcuNH5bve-a4I0XXO461Jo_NqdMEXtg-fqXC-6Ezootq_O507G-Iw7dMxjWZI1-jCqj6Zm-86R5un5dtihdevzy-LxzXWDMSIlWa1aGoOlhIGFWmF1mA5MCWIFcJqo7QoGVe25VToVmVKTXUDZGsVE5zN0d3ku4_h45D_lLtwiD6flJRWWQpVU2cWTCwdQ0rRWLmPblDxKAnIU1jyb1hZgidJUp35Nf2X_wVUjWm4</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Graser, Anita</creator><creator>Schmidt, Johanna</creator><creator>Roth, Florian</creator><creator>Brändle, Norbert</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201901</creationdate><title>Untangling origin-destination flows in geographic information systems</title><author>Graser, Anita ; Schmidt, Johanna ; Roth, Florian ; Brändle, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-ac3698670f213051b9cc0f703a91f99fceac9437afb729cba51b62c801dfa3973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bundling</topic><topic>Cartography</topic><topic>Clustering</topic><topic>Clutter</topic><topic>Datasets</topic><topic>Domains</topic><topic>Flow mapping</topic><topic>Flow visualization</topic><topic>Geographic information systems</topic><topic>Scientific visualization</topic><topic>Spatial data</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graser, Anita</creatorcontrib><creatorcontrib>Schmidt, Johanna</creatorcontrib><creatorcontrib>Roth, Florian</creatorcontrib><creatorcontrib>Brändle, Norbert</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graser, Anita</au><au>Schmidt, Johanna</au><au>Roth, Florian</au><au>Brändle, Norbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Untangling origin-destination flows in geographic information systems</atitle><jtitle>Information visualization</jtitle><date>2019-01</date><risdate>2019</risdate><volume>18</volume><issue>1</issue><spage>153</spage><epage>172</epage><pages>153-172</pages><issn>1473-8716</issn><eissn>1473-8724</eissn><abstract>Origin–destination flow maps are a popular option to visualize connections between different spatial locations, where specific routes between the origin and destination are unknown or irrelevant. Visualizing origin–destination flows is challenging mainly due to visual clutter which appears quickly as data sets grow. Clutter reduction techniques are intensively explored in the information visualization and cartography domains. However, current automatic techniques for origin–destination flow visualization, such as edge bundling, are not available in geographic information systems which are widely used to visualize spatial data, such as origin–destination flows. In this article, we explore the applicability of edge bundling to spatial data sets and necessary adaptations under the constraints inherent to platform-independent geographic information system scripting environments. We propose (1) a new clustering technique for origin–destination flows that provides within-cluster consistency to speed up computations, (2) an edge bundling approach based on force-directed edge bundling employing matrix computations, (3) a new technique to determine the local strength of a bundle leveraging spatial indexes, and (4) a geographic information system–based technique to spatially offset bundles describing different flow directions. Finally, we evaluate our method by applying it to origin–destination flow data sets with a wide variety of different data characteristics.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1473871617738122</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-8716 |
ispartof | Information visualization, 2019-01, Vol.18 (1), p.153-172 |
issn | 1473-8716 1473-8724 |
language | eng |
recordid | cdi_proquest_journals_2259430586 |
source | SAGE Complete |
subjects | Bundling Cartography Clustering Clutter Datasets Domains Flow mapping Flow visualization Geographic information systems Scientific visualization Spatial data Visualization |
title | Untangling origin-destination flows in geographic information systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Untangling%20origin-destination%20flows%20in%20geographic%20information%20systems&rft.jtitle=Information%20visualization&rft.au=Graser,%20Anita&rft.date=2019-01&rft.volume=18&rft.issue=1&rft.spage=153&rft.epage=172&rft.pages=153-172&rft.issn=1473-8716&rft.eissn=1473-8724&rft_id=info:doi/10.1177/1473871617738122&rft_dat=%3Cproquest_cross%3E2259430586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259430586&rft_id=info:pmid/&rft_sage_id=10.1177_1473871617738122&rfr_iscdi=true |