Dynamic control for permanent magnet synchronous generator system using novel modified recurrent wavelet neural network

Because permanent magnet synchronous generator (PMSG) system driven by permanent magnet synchronous motor (PMSM) based on wind turbine emulator (WTE) is a nonlinear and time-varying system with high complication, an accurate dynamic model of the PMSG system directly driven by WTE is difficult to est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2014-09, Vol.77 (4), p.1261-1284
1. Verfasser: Lin, Chih-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1284
container_issue 4
container_start_page 1261
container_title Nonlinear dynamics
container_volume 77
creator Lin, Chih-Hong
description Because permanent magnet synchronous generator (PMSG) system driven by permanent magnet synchronous motor (PMSM) based on wind turbine emulator (WTE) is a nonlinear and time-varying system with high complication, an accurate dynamic model of the PMSG system directly driven by WTE is difficult to establish for the linear controller design. In order to conquer this difficulty and improve the robustness of dynamic system, the PMSG system controlled by the online-tuned parameters of the novel modified recurrent wavelet neural network (NN)-controlled system is proposed to control output voltages and powers of controllable rectifier and inverter in this study. First, a closed-loop PMSM-driven system based on WTE is designed for driving the PMSG system to generate output power. Second, the rotor speeds of the PMSG, the voltages, and currents of the two power converters are detected simultaneously to yield maximum power output. In addition, two sets of the online-tuned parameters of the modified recurrent wavelet NN controllers in the controllable rectifier and inverter are developed for the voltage-regulating controllers in order to improve output performance. Finally, some experimental results are verified to show the effectiveness of the proposed novel modified recurrent wavelet NN controller for the power output of the PMSG system driven by WTE.
doi_str_mv 10.1007/s11071-014-1376-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259429282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259429282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-19943913cdce3d87b6582b86f41c73a29d321af1c14a6b5e0cf94451c1c386ef3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA82om2a8cpX6C4EWht5BmZ-vWblInu5b-e1MqePI0DPO8z8DL2CWIaxCiuokAooJMQJ6BqspMHbEJFJXKZKnnx2witMwzocX8lJ3FuBJCKCnqCdve7bztO8dd8AOFNW8D8Q1Sbz36gfd26XHgcefdBwUfxsiX6JHskLC4iwP2fIydX3IfvnHN-9B0bYcNJ3Qj0V6xtemQHB5Hsus0hm2gz3N20tp1xIvfOWXvD_dvs6fs5fXxeXb7kjkF5ZCB1rnSoFzjUDV1tSiLWi7qss3BVcpK3SgJtgUHuS0XBQrX6jwv0u5UXWKrpuzq4N1Q-BoxDmYVRvLppZGy0LnUspaJggPlKMRI2JoNdb2lnQFh9v2aQ78m9Wv2_RqVMvKQiYn1S6Q_8_-hH9MpgLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259429282</pqid></control><display><type>article</type><title>Dynamic control for permanent magnet synchronous generator system using novel modified recurrent wavelet neural network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lin, Chih-Hong</creator><creatorcontrib>Lin, Chih-Hong</creatorcontrib><description>Because permanent magnet synchronous generator (PMSG) system driven by permanent magnet synchronous motor (PMSM) based on wind turbine emulator (WTE) is a nonlinear and time-varying system with high complication, an accurate dynamic model of the PMSG system directly driven by WTE is difficult to establish for the linear controller design. In order to conquer this difficulty and improve the robustness of dynamic system, the PMSG system controlled by the online-tuned parameters of the novel modified recurrent wavelet neural network (NN)-controlled system is proposed to control output voltages and powers of controllable rectifier and inverter in this study. First, a closed-loop PMSM-driven system based on WTE is designed for driving the PMSG system to generate output power. Second, the rotor speeds of the PMSG, the voltages, and currents of the two power converters are detected simultaneously to yield maximum power output. In addition, two sets of the online-tuned parameters of the modified recurrent wavelet NN controllers in the controllable rectifier and inverter are developed for the voltage-regulating controllers in order to improve output performance. Finally, some experimental results are verified to show the effectiveness of the proposed novel modified recurrent wavelet NN controller for the power output of the PMSG system driven by WTE.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-014-1376-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Control systems design ; Controllers ; Dynamic control ; Dynamic models ; Dynamical Systems ; Emulators ; Engineering ; Inverters ; Magnetism ; Maximum power ; Mechanical Engineering ; Neural networks ; On-line systems ; Original Paper ; Parameter modification ; Permanent magnets ; Power converters ; Rectifiers ; Stability ; Synchronous motors ; Vibration ; Wavelet analysis ; Wind turbines</subject><ispartof>Nonlinear dynamics, 2014-09, Vol.77 (4), p.1261-1284</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-19943913cdce3d87b6582b86f41c73a29d321af1c14a6b5e0cf94451c1c386ef3</citedby><cites>FETCH-LOGICAL-c316t-19943913cdce3d87b6582b86f41c73a29d321af1c14a6b5e0cf94451c1c386ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-014-1376-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-014-1376-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lin, Chih-Hong</creatorcontrib><title>Dynamic control for permanent magnet synchronous generator system using novel modified recurrent wavelet neural network</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Because permanent magnet synchronous generator (PMSG) system driven by permanent magnet synchronous motor (PMSM) based on wind turbine emulator (WTE) is a nonlinear and time-varying system with high complication, an accurate dynamic model of the PMSG system directly driven by WTE is difficult to establish for the linear controller design. In order to conquer this difficulty and improve the robustness of dynamic system, the PMSG system controlled by the online-tuned parameters of the novel modified recurrent wavelet neural network (NN)-controlled system is proposed to control output voltages and powers of controllable rectifier and inverter in this study. First, a closed-loop PMSM-driven system based on WTE is designed for driving the PMSG system to generate output power. Second, the rotor speeds of the PMSG, the voltages, and currents of the two power converters are detected simultaneously to yield maximum power output. In addition, two sets of the online-tuned parameters of the modified recurrent wavelet NN controllers in the controllable rectifier and inverter are developed for the voltage-regulating controllers in order to improve output performance. Finally, some experimental results are verified to show the effectiveness of the proposed novel modified recurrent wavelet NN controller for the power output of the PMSG system driven by WTE.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Dynamic control</subject><subject>Dynamic models</subject><subject>Dynamical Systems</subject><subject>Emulators</subject><subject>Engineering</subject><subject>Inverters</subject><subject>Magnetism</subject><subject>Maximum power</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>On-line systems</subject><subject>Original Paper</subject><subject>Parameter modification</subject><subject>Permanent magnets</subject><subject>Power converters</subject><subject>Rectifiers</subject><subject>Stability</subject><subject>Synchronous motors</subject><subject>Vibration</subject><subject>Wavelet analysis</subject><subject>Wind turbines</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvA82om2a8cpX6C4EWht5BmZ-vWblInu5b-e1MqePI0DPO8z8DL2CWIaxCiuokAooJMQJ6BqspMHbEJFJXKZKnnx2witMwzocX8lJ3FuBJCKCnqCdve7bztO8dd8AOFNW8D8Q1Sbz36gfd26XHgcefdBwUfxsiX6JHskLC4iwP2fIydX3IfvnHN-9B0bYcNJ3Qj0V6xtemQHB5Hsus0hm2gz3N20tp1xIvfOWXvD_dvs6fs5fXxeXb7kjkF5ZCB1rnSoFzjUDV1tSiLWi7qss3BVcpK3SgJtgUHuS0XBQrX6jwv0u5UXWKrpuzq4N1Q-BoxDmYVRvLppZGy0LnUspaJggPlKMRI2JoNdb2lnQFh9v2aQ78m9Wv2_RqVMvKQiYn1S6Q_8_-hH9MpgLM</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Lin, Chih-Hong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20140901</creationdate><title>Dynamic control for permanent magnet synchronous generator system using novel modified recurrent wavelet neural network</title><author>Lin, Chih-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-19943913cdce3d87b6582b86f41c73a29d321af1c14a6b5e0cf94451c1c386ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Dynamic control</topic><topic>Dynamic models</topic><topic>Dynamical Systems</topic><topic>Emulators</topic><topic>Engineering</topic><topic>Inverters</topic><topic>Magnetism</topic><topic>Maximum power</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>On-line systems</topic><topic>Original Paper</topic><topic>Parameter modification</topic><topic>Permanent magnets</topic><topic>Power converters</topic><topic>Rectifiers</topic><topic>Stability</topic><topic>Synchronous motors</topic><topic>Vibration</topic><topic>Wavelet analysis</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chih-Hong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chih-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic control for permanent magnet synchronous generator system using novel modified recurrent wavelet neural network</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>77</volume><issue>4</issue><spage>1261</spage><epage>1284</epage><pages>1261-1284</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Because permanent magnet synchronous generator (PMSG) system driven by permanent magnet synchronous motor (PMSM) based on wind turbine emulator (WTE) is a nonlinear and time-varying system with high complication, an accurate dynamic model of the PMSG system directly driven by WTE is difficult to establish for the linear controller design. In order to conquer this difficulty and improve the robustness of dynamic system, the PMSG system controlled by the online-tuned parameters of the novel modified recurrent wavelet neural network (NN)-controlled system is proposed to control output voltages and powers of controllable rectifier and inverter in this study. First, a closed-loop PMSM-driven system based on WTE is designed for driving the PMSG system to generate output power. Second, the rotor speeds of the PMSG, the voltages, and currents of the two power converters are detected simultaneously to yield maximum power output. In addition, two sets of the online-tuned parameters of the modified recurrent wavelet NN controllers in the controllable rectifier and inverter are developed for the voltage-regulating controllers in order to improve output performance. Finally, some experimental results are verified to show the effectiveness of the proposed novel modified recurrent wavelet NN controller for the power output of the PMSG system driven by WTE.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-014-1376-3</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2014-09, Vol.77 (4), p.1261-1284
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259429282
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Classical Mechanics
Control
Control systems design
Controllers
Dynamic control
Dynamic models
Dynamical Systems
Emulators
Engineering
Inverters
Magnetism
Maximum power
Mechanical Engineering
Neural networks
On-line systems
Original Paper
Parameter modification
Permanent magnets
Power converters
Rectifiers
Stability
Synchronous motors
Vibration
Wavelet analysis
Wind turbines
title Dynamic control for permanent magnet synchronous generator system using novel modified recurrent wavelet neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20control%20for%20permanent%20magnet%20synchronous%20generator%20system%20using%20novel%20modified%20recurrent%20wavelet%20neural%20network&rft.jtitle=Nonlinear%20dynamics&rft.au=Lin,%20Chih-Hong&rft.date=2014-09-01&rft.volume=77&rft.issue=4&rft.spage=1261&rft.epage=1284&rft.pages=1261-1284&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-014-1376-3&rft_dat=%3Cproquest_cross%3E2259429282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259429282&rft_id=info:pmid/&rfr_iscdi=true