To reduce the instability region in the nonlinear transverse vibration of randomly excited plates using orthotropic P-FG material

In this paper, the instability region and border curves of bifurcation for a power-law functionally graded orthotropic plate subjected to lateral white noise excitation are obtained analytically. The instability region is computed and drawn as a function of load and the material properties of orthot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2015-05, Vol.80 (3), p.1413-1430
Hauptverfasser: Abedi, M., Asnafi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1430
container_issue 3
container_start_page 1413
container_title Nonlinear dynamics
container_volume 80
creator Abedi, M.
Asnafi, A.
description In this paper, the instability region and border curves of bifurcation for a power-law functionally graded orthotropic plate subjected to lateral white noise excitation are obtained analytically. The instability region is computed and drawn as a function of load and the material properties of orthotropic power-law functionally graded material. First the governing equation for a general power-law functionally graded plate is derived with respect to assumed material property. After that, it is rewritten by introducing some non-dimensional parameters such that the results are applicable and usable for a wide range of plates. Then using Fokker–Planck–Kolmogorov equation, an exact relation for the probability density function of response is derived. A root locus study is done on the roots of probability density function to obtain a three-dimensional instability region whose borders specify the occurrence of bifurcation. Without any loss of generality and using an example, the correctness of the method to predict the instability and bifurcation is checked. Also the role of material property is investigated when some analogical figures are drawn that compare the behavior of homogenous plates with their corresponding functionally graded ones. Finally, the outcomes are validated by both the Monte Carlo simulation and the numeric bifurcation analysis of the plate.
doi_str_mv 10.1007/s11071-015-1952-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259424881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259424881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-96ddda5c1dcd2ef2d4578f2f933d6fc74223c9d6592a3b8343a385934c9e03ec3</originalsourceid><addsrcrecordid>eNp1kE1LAzEYhIMoWKs_wFvAczQf-5WjFFuFgh4q9BbSJNumbJM1yRZ79J-76wqePL0w88y8MADcEnxPMC4fIiG4JAiTHBGeU0TOwITkJUO04OtzMMGcZghzvL4EVzHuMcaM4moCvlYeBqM7ZWDaGWhdTHJjG5tOvby13vXSj-O8a6wzMsAUpItHE6KBR7sJMg2Ur2Eva39oTtB8KpuMhm0jk4mwi9ZtoQ9p51PwrVXwDc0X8NCbwcrmGlzUsonm5vdOwfv8aTV7RsvXxcvscYkUq4qEeKG1lrkiWmlqaqqzvKxqWnPGdFGrMqOUKa6LnFPJNhXLmGRVzlmmuMHMKDYFd2NvG_xHZ2ISe98F178UlOY8o1lVkZ4iI6WCjzGYWrTBHmQ4CYLFsLQYlxb90mJYWgwZOmZiz7qtCX_N_4e-AcSJg6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259424881</pqid></control><display><type>article</type><title>To reduce the instability region in the nonlinear transverse vibration of randomly excited plates using orthotropic P-FG material</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abedi, M. ; Asnafi, A.</creator><creatorcontrib>Abedi, M. ; Asnafi, A.</creatorcontrib><description>In this paper, the instability region and border curves of bifurcation for a power-law functionally graded orthotropic plate subjected to lateral white noise excitation are obtained analytically. The instability region is computed and drawn as a function of load and the material properties of orthotropic power-law functionally graded material. First the governing equation for a general power-law functionally graded plate is derived with respect to assumed material property. After that, it is rewritten by introducing some non-dimensional parameters such that the results are applicable and usable for a wide range of plates. Then using Fokker–Planck–Kolmogorov equation, an exact relation for the probability density function of response is derived. A root locus study is done on the roots of probability density function to obtain a three-dimensional instability region whose borders specify the occurrence of bifurcation. Without any loss of generality and using an example, the correctness of the method to predict the instability and bifurcation is checked. Also the role of material property is investigated when some analogical figures are drawn that compare the behavior of homogenous plates with their corresponding functionally graded ones. Finally, the outcomes are validated by both the Monte Carlo simulation and the numeric bifurcation analysis of the plate.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-015-1952-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bifurcations ; Classical Mechanics ; Computer simulation ; Control ; Dynamical Systems ; Engineering ; Functionally gradient materials ; Lateral stability ; Material properties ; Mechanical Engineering ; Monte Carlo simulation ; Original Paper ; Orthotropic plates ; Power law ; Probability density functions ; Root locus ; Stability analysis ; Transverse oscillation ; Vibration ; White noise</subject><ispartof>Nonlinear dynamics, 2015-05, Vol.80 (3), p.1413-1430</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-96ddda5c1dcd2ef2d4578f2f933d6fc74223c9d6592a3b8343a385934c9e03ec3</citedby><cites>FETCH-LOGICAL-c386t-96ddda5c1dcd2ef2d4578f2f933d6fc74223c9d6592a3b8343a385934c9e03ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-015-1952-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-015-1952-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Abedi, M.</creatorcontrib><creatorcontrib>Asnafi, A.</creatorcontrib><title>To reduce the instability region in the nonlinear transverse vibration of randomly excited plates using orthotropic P-FG material</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, the instability region and border curves of bifurcation for a power-law functionally graded orthotropic plate subjected to lateral white noise excitation are obtained analytically. The instability region is computed and drawn as a function of load and the material properties of orthotropic power-law functionally graded material. First the governing equation for a general power-law functionally graded plate is derived with respect to assumed material property. After that, it is rewritten by introducing some non-dimensional parameters such that the results are applicable and usable for a wide range of plates. Then using Fokker–Planck–Kolmogorov equation, an exact relation for the probability density function of response is derived. A root locus study is done on the roots of probability density function to obtain a three-dimensional instability region whose borders specify the occurrence of bifurcation. Without any loss of generality and using an example, the correctness of the method to predict the instability and bifurcation is checked. Also the role of material property is investigated when some analogical figures are drawn that compare the behavior of homogenous plates with their corresponding functionally graded ones. Finally, the outcomes are validated by both the Monte Carlo simulation and the numeric bifurcation analysis of the plate.</description><subject>Automotive Engineering</subject><subject>Bifurcations</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Functionally gradient materials</subject><subject>Lateral stability</subject><subject>Material properties</subject><subject>Mechanical Engineering</subject><subject>Monte Carlo simulation</subject><subject>Original Paper</subject><subject>Orthotropic plates</subject><subject>Power law</subject><subject>Probability density functions</subject><subject>Root locus</subject><subject>Stability analysis</subject><subject>Transverse oscillation</subject><subject>Vibration</subject><subject>White noise</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEYhIMoWKs_wFvAczQf-5WjFFuFgh4q9BbSJNumbJM1yRZ79J-76wqePL0w88y8MADcEnxPMC4fIiG4JAiTHBGeU0TOwITkJUO04OtzMMGcZghzvL4EVzHuMcaM4moCvlYeBqM7ZWDaGWhdTHJjG5tOvby13vXSj-O8a6wzMsAUpItHE6KBR7sJMg2Ur2Eva39oTtB8KpuMhm0jk4mwi9ZtoQ9p51PwrVXwDc0X8NCbwcrmGlzUsonm5vdOwfv8aTV7RsvXxcvscYkUq4qEeKG1lrkiWmlqaqqzvKxqWnPGdFGrMqOUKa6LnFPJNhXLmGRVzlmmuMHMKDYFd2NvG_xHZ2ISe98F178UlOY8o1lVkZ4iI6WCjzGYWrTBHmQ4CYLFsLQYlxb90mJYWgwZOmZiz7qtCX_N_4e-AcSJg6U</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Abedi, M.</creator><creator>Asnafi, A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150501</creationdate><title>To reduce the instability region in the nonlinear transverse vibration of randomly excited plates using orthotropic P-FG material</title><author>Abedi, M. ; Asnafi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-96ddda5c1dcd2ef2d4578f2f933d6fc74223c9d6592a3b8343a385934c9e03ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automotive Engineering</topic><topic>Bifurcations</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Functionally gradient materials</topic><topic>Lateral stability</topic><topic>Material properties</topic><topic>Mechanical Engineering</topic><topic>Monte Carlo simulation</topic><topic>Original Paper</topic><topic>Orthotropic plates</topic><topic>Power law</topic><topic>Probability density functions</topic><topic>Root locus</topic><topic>Stability analysis</topic><topic>Transverse oscillation</topic><topic>Vibration</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abedi, M.</creatorcontrib><creatorcontrib>Asnafi, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abedi, M.</au><au>Asnafi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>To reduce the instability region in the nonlinear transverse vibration of randomly excited plates using orthotropic P-FG material</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>80</volume><issue>3</issue><spage>1413</spage><epage>1430</epage><pages>1413-1430</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, the instability region and border curves of bifurcation for a power-law functionally graded orthotropic plate subjected to lateral white noise excitation are obtained analytically. The instability region is computed and drawn as a function of load and the material properties of orthotropic power-law functionally graded material. First the governing equation for a general power-law functionally graded plate is derived with respect to assumed material property. After that, it is rewritten by introducing some non-dimensional parameters such that the results are applicable and usable for a wide range of plates. Then using Fokker–Planck–Kolmogorov equation, an exact relation for the probability density function of response is derived. A root locus study is done on the roots of probability density function to obtain a three-dimensional instability region whose borders specify the occurrence of bifurcation. Without any loss of generality and using an example, the correctness of the method to predict the instability and bifurcation is checked. Also the role of material property is investigated when some analogical figures are drawn that compare the behavior of homogenous plates with their corresponding functionally graded ones. Finally, the outcomes are validated by both the Monte Carlo simulation and the numeric bifurcation analysis of the plate.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-015-1952-1</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2015-05, Vol.80 (3), p.1413-1430
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259424881
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Bifurcations
Classical Mechanics
Computer simulation
Control
Dynamical Systems
Engineering
Functionally gradient materials
Lateral stability
Material properties
Mechanical Engineering
Monte Carlo simulation
Original Paper
Orthotropic plates
Power law
Probability density functions
Root locus
Stability analysis
Transverse oscillation
Vibration
White noise
title To reduce the instability region in the nonlinear transverse vibration of randomly excited plates using orthotropic P-FG material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A03%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=To%20reduce%20the%20instability%20region%20in%20the%20nonlinear%20transverse%20vibration%20of%20randomly%20excited%20plates%20using%20orthotropic%20P-FG%20material&rft.jtitle=Nonlinear%20dynamics&rft.au=Abedi,%20M.&rft.date=2015-05-01&rft.volume=80&rft.issue=3&rft.spage=1413&rft.epage=1430&rft.pages=1413-1430&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-015-1952-1&rft_dat=%3Cproquest_cross%3E2259424881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259424881&rft_id=info:pmid/&rfr_iscdi=true