Genetic mapping in grapevine using SNP microarray intensity values
Genotyping microarrays are widely used for genetic mapping, but in high-diversity organisms, the quality of SNP calls can be diminished by genetic variation near the assayed nucleotide. To address this limitation in grapevine, we developed a simple heuristic that uses hybridization intensity to gene...
Gespeichert in:
Veröffentlicht in: | Molecular breeding 2015-03, Vol.35 (3), p.1-12, Article 88 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Molecular breeding |
container_volume | 35 |
creator | Myles, Sean Mahanil, Siraprapa Harriman, James Gardner, Kyle M. Franklin, Jeffrey L. Reisch, Bruce I. Ramming, David W. Owens, Christopher L. Li, Lin Buckler, Edward S. Cadle-Davidson, Lance |
description | Genotyping microarrays are widely used for genetic mapping, but in high-diversity organisms, the quality of SNP calls can be diminished by genetic variation near the assayed nucleotide. To address this limitation in grapevine, we developed a simple heuristic that uses hybridization intensity to genetically map phenotypes without the need to distinguish between polymorphic states. We applied this approach to the mapping of three previously mapped traits, each controlled by single major effect loci—color, flower sex, and powdery mildew resistance—and confirmed that intensity values outperform SNP calls in all cases. Further, because per sample cost is a major limitation to the adoption of genotyping microarrays in applied genetic research and plant breeding, we tested how many samples were required to map a Mendelian trait in an F1 grape population and found that we could identify the correct genomic region with as few as 12 samples. For high-diversity species for which genotyping arrays are available or under development, our findings suggest a powerful and cost-effective approach to identify large-effect QTL when faced with poor SNP quality. |
doi_str_mv | 10.1007/s11032-015-0288-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259417240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259417240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-369804e942a0a3b49f093bcd3b21b0a7f2cd1c4da948076d0caa3f480c4151173</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuC5-hMkt0kRy1ahaKCeg7ZbLaktNs12Rb6701ZwZOneQzvvRk-Qq4RbhFA3iVE4IwClhSYUpSfkAmWklEtlTrNmiugXAp-Ti5SWkHO6KqakIe57_wQXLGxfR-6ZRG6Yhlt7_eh88UuHVcfr-_FJri4tTHaQ3YMvkthOBR7u975dEnOWrtO_up3TsnX0-Pn7Jku3uYvs_sFdRyrgfJKKxBeC2bB8lroFjSvXcNrhjVY2TLXoBON1UKBrBpw1vI2ayewRJR8Sm7G3j5uv_Pdway2u9jlk4axUguUTEB24ejK_6YUfWv6GDY2HgyCOaIyIyqTUZkjKsNzho2ZlL3d0se_5v9DP7GXavQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259417240</pqid></control><display><type>article</type><title>Genetic mapping in grapevine using SNP microarray intensity values</title><source>SpringerLink Journals - AutoHoldings</source><creator>Myles, Sean ; Mahanil, Siraprapa ; Harriman, James ; Gardner, Kyle M. ; Franklin, Jeffrey L. ; Reisch, Bruce I. ; Ramming, David W. ; Owens, Christopher L. ; Li, Lin ; Buckler, Edward S. ; Cadle-Davidson, Lance</creator><creatorcontrib>Myles, Sean ; Mahanil, Siraprapa ; Harriman, James ; Gardner, Kyle M. ; Franklin, Jeffrey L. ; Reisch, Bruce I. ; Ramming, David W. ; Owens, Christopher L. ; Li, Lin ; Buckler, Edward S. ; Cadle-Davidson, Lance</creatorcontrib><description>Genotyping microarrays are widely used for genetic mapping, but in high-diversity organisms, the quality of SNP calls can be diminished by genetic variation near the assayed nucleotide. To address this limitation in grapevine, we developed a simple heuristic that uses hybridization intensity to genetically map phenotypes without the need to distinguish between polymorphic states. We applied this approach to the mapping of three previously mapped traits, each controlled by single major effect loci—color, flower sex, and powdery mildew resistance—and confirmed that intensity values outperform SNP calls in all cases. Further, because per sample cost is a major limitation to the adoption of genotyping microarrays in applied genetic research and plant breeding, we tested how many samples were required to map a Mendelian trait in an F1 grape population and found that we could identify the correct genomic region with as few as 12 samples. For high-diversity species for which genotyping arrays are available or under development, our findings suggest a powerful and cost-effective approach to identify large-effect QTL when faced with poor SNP quality.</description><identifier>ISSN: 1380-3743</identifier><identifier>EISSN: 1572-9788</identifier><identifier>DOI: 10.1007/s11032-015-0288-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Airborne microorganisms ; Biodiversity ; Biomedical and Life Sciences ; Biotechnology ; Gene mapping ; Genetic diversity ; Genotyping ; Grapevines ; Hybridization ; Life Sciences ; Mapping ; Molecular biology ; Nucleotides ; Phenotypes ; Plant biology ; Plant breeding ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Powdery mildew ; Quantitative trait loci ; Single-nucleotide polymorphism ; Species diversity</subject><ispartof>Molecular breeding, 2015-03, Vol.35 (3), p.1-12, Article 88</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Molecular Breeding is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-369804e942a0a3b49f093bcd3b21b0a7f2cd1c4da948076d0caa3f480c4151173</citedby><cites>FETCH-LOGICAL-c316t-369804e942a0a3b49f093bcd3b21b0a7f2cd1c4da948076d0caa3f480c4151173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11032-015-0288-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11032-015-0288-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Myles, Sean</creatorcontrib><creatorcontrib>Mahanil, Siraprapa</creatorcontrib><creatorcontrib>Harriman, James</creatorcontrib><creatorcontrib>Gardner, Kyle M.</creatorcontrib><creatorcontrib>Franklin, Jeffrey L.</creatorcontrib><creatorcontrib>Reisch, Bruce I.</creatorcontrib><creatorcontrib>Ramming, David W.</creatorcontrib><creatorcontrib>Owens, Christopher L.</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Buckler, Edward S.</creatorcontrib><creatorcontrib>Cadle-Davidson, Lance</creatorcontrib><title>Genetic mapping in grapevine using SNP microarray intensity values</title><title>Molecular breeding</title><addtitle>Mol Breeding</addtitle><description>Genotyping microarrays are widely used for genetic mapping, but in high-diversity organisms, the quality of SNP calls can be diminished by genetic variation near the assayed nucleotide. To address this limitation in grapevine, we developed a simple heuristic that uses hybridization intensity to genetically map phenotypes without the need to distinguish between polymorphic states. We applied this approach to the mapping of three previously mapped traits, each controlled by single major effect loci—color, flower sex, and powdery mildew resistance—and confirmed that intensity values outperform SNP calls in all cases. Further, because per sample cost is a major limitation to the adoption of genotyping microarrays in applied genetic research and plant breeding, we tested how many samples were required to map a Mendelian trait in an F1 grape population and found that we could identify the correct genomic region with as few as 12 samples. For high-diversity species for which genotyping arrays are available or under development, our findings suggest a powerful and cost-effective approach to identify large-effect QTL when faced with poor SNP quality.</description><subject>Airborne microorganisms</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Gene mapping</subject><subject>Genetic diversity</subject><subject>Genotyping</subject><subject>Grapevines</subject><subject>Hybridization</subject><subject>Life Sciences</subject><subject>Mapping</subject><subject>Molecular biology</subject><subject>Nucleotides</subject><subject>Phenotypes</subject><subject>Plant biology</subject><subject>Plant breeding</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Powdery mildew</subject><subject>Quantitative trait loci</subject><subject>Single-nucleotide polymorphism</subject><subject>Species diversity</subject><issn>1380-3743</issn><issn>1572-9788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuC5-hMkt0kRy1ahaKCeg7ZbLaktNs12Rb6701ZwZOneQzvvRk-Qq4RbhFA3iVE4IwClhSYUpSfkAmWklEtlTrNmiugXAp-Ti5SWkHO6KqakIe57_wQXLGxfR-6ZRG6Yhlt7_eh88UuHVcfr-_FJri4tTHaQ3YMvkthOBR7u975dEnOWrtO_up3TsnX0-Pn7Jku3uYvs_sFdRyrgfJKKxBeC2bB8lroFjSvXcNrhjVY2TLXoBON1UKBrBpw1vI2ayewRJR8Sm7G3j5uv_Pdway2u9jlk4axUguUTEB24ejK_6YUfWv6GDY2HgyCOaIyIyqTUZkjKsNzho2ZlL3d0se_5v9DP7GXavQ</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Myles, Sean</creator><creator>Mahanil, Siraprapa</creator><creator>Harriman, James</creator><creator>Gardner, Kyle M.</creator><creator>Franklin, Jeffrey L.</creator><creator>Reisch, Bruce I.</creator><creator>Ramming, David W.</creator><creator>Owens, Christopher L.</creator><creator>Li, Lin</creator><creator>Buckler, Edward S.</creator><creator>Cadle-Davidson, Lance</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20150301</creationdate><title>Genetic mapping in grapevine using SNP microarray intensity values</title><author>Myles, Sean ; Mahanil, Siraprapa ; Harriman, James ; Gardner, Kyle M. ; Franklin, Jeffrey L. ; Reisch, Bruce I. ; Ramming, David W. ; Owens, Christopher L. ; Li, Lin ; Buckler, Edward S. ; Cadle-Davidson, Lance</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-369804e942a0a3b49f093bcd3b21b0a7f2cd1c4da948076d0caa3f480c4151173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Airborne microorganisms</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Gene mapping</topic><topic>Genetic diversity</topic><topic>Genotyping</topic><topic>Grapevines</topic><topic>Hybridization</topic><topic>Life Sciences</topic><topic>Mapping</topic><topic>Molecular biology</topic><topic>Nucleotides</topic><topic>Phenotypes</topic><topic>Plant biology</topic><topic>Plant breeding</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Powdery mildew</topic><topic>Quantitative trait loci</topic><topic>Single-nucleotide polymorphism</topic><topic>Species diversity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myles, Sean</creatorcontrib><creatorcontrib>Mahanil, Siraprapa</creatorcontrib><creatorcontrib>Harriman, James</creatorcontrib><creatorcontrib>Gardner, Kyle M.</creatorcontrib><creatorcontrib>Franklin, Jeffrey L.</creatorcontrib><creatorcontrib>Reisch, Bruce I.</creatorcontrib><creatorcontrib>Ramming, David W.</creatorcontrib><creatorcontrib>Owens, Christopher L.</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Buckler, Edward S.</creatorcontrib><creatorcontrib>Cadle-Davidson, Lance</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Molecular breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myles, Sean</au><au>Mahanil, Siraprapa</au><au>Harriman, James</au><au>Gardner, Kyle M.</au><au>Franklin, Jeffrey L.</au><au>Reisch, Bruce I.</au><au>Ramming, David W.</au><au>Owens, Christopher L.</au><au>Li, Lin</au><au>Buckler, Edward S.</au><au>Cadle-Davidson, Lance</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic mapping in grapevine using SNP microarray intensity values</atitle><jtitle>Molecular breeding</jtitle><stitle>Mol Breeding</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>35</volume><issue>3</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>88</artnum><issn>1380-3743</issn><eissn>1572-9788</eissn><abstract>Genotyping microarrays are widely used for genetic mapping, but in high-diversity organisms, the quality of SNP calls can be diminished by genetic variation near the assayed nucleotide. To address this limitation in grapevine, we developed a simple heuristic that uses hybridization intensity to genetically map phenotypes without the need to distinguish between polymorphic states. We applied this approach to the mapping of three previously mapped traits, each controlled by single major effect loci—color, flower sex, and powdery mildew resistance—and confirmed that intensity values outperform SNP calls in all cases. Further, because per sample cost is a major limitation to the adoption of genotyping microarrays in applied genetic research and plant breeding, we tested how many samples were required to map a Mendelian trait in an F1 grape population and found that we could identify the correct genomic region with as few as 12 samples. For high-diversity species for which genotyping arrays are available or under development, our findings suggest a powerful and cost-effective approach to identify large-effect QTL when faced with poor SNP quality.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11032-015-0288-3</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-3743 |
ispartof | Molecular breeding, 2015-03, Vol.35 (3), p.1-12, Article 88 |
issn | 1380-3743 1572-9788 |
language | eng |
recordid | cdi_proquest_journals_2259417240 |
source | SpringerLink Journals - AutoHoldings |
subjects | Airborne microorganisms Biodiversity Biomedical and Life Sciences Biotechnology Gene mapping Genetic diversity Genotyping Grapevines Hybridization Life Sciences Mapping Molecular biology Nucleotides Phenotypes Plant biology Plant breeding Plant Genetics and Genomics Plant Pathology Plant Physiology Plant Sciences Powdery mildew Quantitative trait loci Single-nucleotide polymorphism Species diversity |
title | Genetic mapping in grapevine using SNP microarray intensity values |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20mapping%20in%20grapevine%20using%20SNP%20microarray%20intensity%20values&rft.jtitle=Molecular%20breeding&rft.au=Myles,%20Sean&rft.date=2015-03-01&rft.volume=35&rft.issue=3&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=88&rft.issn=1380-3743&rft.eissn=1572-9788&rft_id=info:doi/10.1007/s11032-015-0288-3&rft_dat=%3Cproquest_cross%3E2259417240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259417240&rft_id=info:pmid/&rfr_iscdi=true |