Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature
Senescence is a genetically programmed and environmentally influenced process resulting in the destruction of chlorophyll and remobilization of nutrients to younger or reproductive parts of plants. Delayed senescence, or stay-green, contributes to a long grain-filling period and stable yield under s...
Gespeichert in:
Veröffentlicht in: | Molecular breeding 2010-08, Vol.26 (2), p.163-175 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | 2 |
container_start_page | 163 |
container_title | Molecular breeding |
container_volume | 26 |
creator | Vijayalakshmi, Kolluru Fritz, Allan K Paulsen, Gary M Bai, Guihua Pandravada, Satchidanand Gill, Bikram S |
description | Senescence is a genetically programmed and environmentally influenced process resulting in the destruction of chlorophyll and remobilization of nutrients to younger or reproductive parts of plants. Delayed senescence, or stay-green, contributes to a long grain-filling period and stable yield under stress. To model senescence and identify quantitative trait loci (QTL) for the trait, a population of recombinant inbred lines (RIL) from a cross between winter wheat cultivars, ‘Ventnor' and ‘Karl 92' was evaluated for heat tolerance under optimum temperature of 20/15°C (day/night) and continuous heat stress of 30/25°C from 10 days after anthesis (DAA) until maturity. Ventnor is a heat-tolerant cultivar and Karl 92 is a relatively heat-susceptible cultivar. Green leaf area was measured and used to model percent greenness retained over the reproductive period. Chlorophyll content and chlorophyll fluorescence were recorded on flag leaves. Senescence was converted to a quantitative trait using the model. Based on the modeled parameters, the RILs were categorized into three groups. When senescence-related traits were evaluated, nine QTL for heat tolerance were found on chromosome 2A, two each on chromosomes 6A and 6B and one each on chromosome 3A, 3B, and 7A. Both parents contributed favorable alleles for most of the senescence-related traits. Microsatellite markers Xgwm356 and Xgwm5 prominently linked to the senescence-related traits may be useful in marker-assisted breeding. These and the linked AFLP (amplified fragment length polymorphism) markers XCGT.TGCG-349, XCGT.GTG-343, and XCGT.CTCG-406, if converted to STS (sequence tagged sites), can be used for further molecular dissection of the QTL for post-anthesis heat tolerance. |
doi_str_mv | 10.1007/s11032-009-9366-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259410796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259410796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-2406cf50a45b3094a2a4e711dce307b205ac2db5f928349a1117d153af4a3c823</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhoMoWD9-gCcXPK_uV5LNUYpfUBGxPcoyTSZpSruJuxuK_94NEbx5mvfwPjPMkyRXnN1yxvI7zzmTgjJW0EJmGdVHyYynuaBFrvVxzFIzKnMlT5Mz77csMkWWzZLP167CXWsbArYie-j7Mb8vF6TuHPFo0ZdoS6QOdxCwIsFBGzxpLTm0NqAjhw1CIIOtYt60zYYE3PfoIAwOL5KTGnYeL3_nebJ6fFjOn-ni7ellfr-gpdQyUKFYVtYpA5WuJSsUCFCYc16VKFm-FiyFUlTrtC6ElqoAznle8VRCrUCWWsjz5Gba27vua0AfzLYbnI0njRBpofj4bWzxqVW6znuHtelduwf3bTgzo0UzWTTRohktGh0ZMTE-dm2D7m_zf9D1BNXQGWhc683qQzAuGdd5ZJT8AZknfb0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259410796</pqid></control><display><type>article</type><title>Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature</title><source>Springer Nature - Complete Springer Journals</source><creator>Vijayalakshmi, Kolluru ; Fritz, Allan K ; Paulsen, Gary M ; Bai, Guihua ; Pandravada, Satchidanand ; Gill, Bikram S</creator><creatorcontrib>Vijayalakshmi, Kolluru ; Fritz, Allan K ; Paulsen, Gary M ; Bai, Guihua ; Pandravada, Satchidanand ; Gill, Bikram S</creatorcontrib><description>Senescence is a genetically programmed and environmentally influenced process resulting in the destruction of chlorophyll and remobilization of nutrients to younger or reproductive parts of plants. Delayed senescence, or stay-green, contributes to a long grain-filling period and stable yield under stress. To model senescence and identify quantitative trait loci (QTL) for the trait, a population of recombinant inbred lines (RIL) from a cross between winter wheat cultivars, ‘Ventnor' and ‘Karl 92' was evaluated for heat tolerance under optimum temperature of 20/15°C (day/night) and continuous heat stress of 30/25°C from 10 days after anthesis (DAA) until maturity. Ventnor is a heat-tolerant cultivar and Karl 92 is a relatively heat-susceptible cultivar. Green leaf area was measured and used to model percent greenness retained over the reproductive period. Chlorophyll content and chlorophyll fluorescence were recorded on flag leaves. Senescence was converted to a quantitative trait using the model. Based on the modeled parameters, the RILs were categorized into three groups. When senescence-related traits were evaluated, nine QTL for heat tolerance were found on chromosome 2A, two each on chromosomes 6A and 6B and one each on chromosome 3A, 3B, and 7A. Both parents contributed favorable alleles for most of the senescence-related traits. Microsatellite markers Xgwm356 and Xgwm5 prominently linked to the senescence-related traits may be useful in marker-assisted breeding. These and the linked AFLP (amplified fragment length polymorphism) markers XCGT.TGCG-349, XCGT.GTG-343, and XCGT.CTCG-406, if converted to STS (sequence tagged sites), can be used for further molecular dissection of the QTL for post-anthesis heat tolerance.</description><identifier>ISSN: 1380-3743</identifier><identifier>EISSN: 1572-9788</identifier><identifier>DOI: 10.1007/s11032-009-9366-8</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Amplified fragment length polymorphism ; Biomedical and Life Sciences ; Biotechnology ; Chlorophyll ; Chromosomes ; Cultivars ; Fluorescence ; Gene mapping ; Genetic markers ; Heat ; Heat stress ; Heat tolerance ; High temperature ; Inbreeding ; Leaf area ; Leaves ; Life Sciences ; Mapping ; Marker-assisted breeding ; Markers ; Microsatellites ; Molecular biology ; Molecular markers ; Nutrients ; Plant biology ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Polymorphism ; Post-anthesis heat stress ; QTL mapping ; Quantitative trait loci ; Senescence ; Temperature tolerance ; Triticum aestivum ; Wheat ; Winter wheat</subject><ispartof>Molecular breeding, 2010-08, Vol.26 (2), p.163-175</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Molecular Breeding is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-2406cf50a45b3094a2a4e711dce307b205ac2db5f928349a1117d153af4a3c823</citedby><cites>FETCH-LOGICAL-c383t-2406cf50a45b3094a2a4e711dce307b205ac2db5f928349a1117d153af4a3c823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11032-009-9366-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11032-009-9366-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Vijayalakshmi, Kolluru</creatorcontrib><creatorcontrib>Fritz, Allan K</creatorcontrib><creatorcontrib>Paulsen, Gary M</creatorcontrib><creatorcontrib>Bai, Guihua</creatorcontrib><creatorcontrib>Pandravada, Satchidanand</creatorcontrib><creatorcontrib>Gill, Bikram S</creatorcontrib><title>Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature</title><title>Molecular breeding</title><addtitle>Mol Breeding</addtitle><description>Senescence is a genetically programmed and environmentally influenced process resulting in the destruction of chlorophyll and remobilization of nutrients to younger or reproductive parts of plants. Delayed senescence, or stay-green, contributes to a long grain-filling period and stable yield under stress. To model senescence and identify quantitative trait loci (QTL) for the trait, a population of recombinant inbred lines (RIL) from a cross between winter wheat cultivars, ‘Ventnor' and ‘Karl 92' was evaluated for heat tolerance under optimum temperature of 20/15°C (day/night) and continuous heat stress of 30/25°C from 10 days after anthesis (DAA) until maturity. Ventnor is a heat-tolerant cultivar and Karl 92 is a relatively heat-susceptible cultivar. Green leaf area was measured and used to model percent greenness retained over the reproductive period. Chlorophyll content and chlorophyll fluorescence were recorded on flag leaves. Senescence was converted to a quantitative trait using the model. Based on the modeled parameters, the RILs were categorized into three groups. When senescence-related traits were evaluated, nine QTL for heat tolerance were found on chromosome 2A, two each on chromosomes 6A and 6B and one each on chromosome 3A, 3B, and 7A. Both parents contributed favorable alleles for most of the senescence-related traits. Microsatellite markers Xgwm356 and Xgwm5 prominently linked to the senescence-related traits may be useful in marker-assisted breeding. These and the linked AFLP (amplified fragment length polymorphism) markers XCGT.TGCG-349, XCGT.GTG-343, and XCGT.CTCG-406, if converted to STS (sequence tagged sites), can be used for further molecular dissection of the QTL for post-anthesis heat tolerance.</description><subject>Amplified fragment length polymorphism</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chlorophyll</subject><subject>Chromosomes</subject><subject>Cultivars</subject><subject>Fluorescence</subject><subject>Gene mapping</subject><subject>Genetic markers</subject><subject>Heat</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>High temperature</subject><subject>Inbreeding</subject><subject>Leaf area</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Mapping</subject><subject>Marker-assisted breeding</subject><subject>Markers</subject><subject>Microsatellites</subject><subject>Molecular biology</subject><subject>Molecular markers</subject><subject>Nutrients</subject><subject>Plant biology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Polymorphism</subject><subject>Post-anthesis heat stress</subject><subject>QTL mapping</subject><subject>Quantitative trait loci</subject><subject>Senescence</subject><subject>Temperature tolerance</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><subject>Winter wheat</subject><issn>1380-3743</issn><issn>1572-9788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1Lw0AQhoMoWD9-gCcXPK_uV5LNUYpfUBGxPcoyTSZpSruJuxuK_94NEbx5mvfwPjPMkyRXnN1yxvI7zzmTgjJW0EJmGdVHyYynuaBFrvVxzFIzKnMlT5Mz77csMkWWzZLP167CXWsbArYie-j7Mb8vF6TuHPFo0ZdoS6QOdxCwIsFBGzxpLTm0NqAjhw1CIIOtYt60zYYE3PfoIAwOL5KTGnYeL3_nebJ6fFjOn-ni7ellfr-gpdQyUKFYVtYpA5WuJSsUCFCYc16VKFm-FiyFUlTrtC6ElqoAznle8VRCrUCWWsjz5Gba27vua0AfzLYbnI0njRBpofj4bWzxqVW6znuHtelduwf3bTgzo0UzWTTRohktGh0ZMTE-dm2D7m_zf9D1BNXQGWhc683qQzAuGdd5ZJT8AZknfb0</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Vijayalakshmi, Kolluru</creator><creator>Fritz, Allan K</creator><creator>Paulsen, Gary M</creator><creator>Bai, Guihua</creator><creator>Pandravada, Satchidanand</creator><creator>Gill, Bikram S</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20100801</creationdate><title>Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature</title><author>Vijayalakshmi, Kolluru ; Fritz, Allan K ; Paulsen, Gary M ; Bai, Guihua ; Pandravada, Satchidanand ; Gill, Bikram S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-2406cf50a45b3094a2a4e711dce307b205ac2db5f928349a1117d153af4a3c823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amplified fragment length polymorphism</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chlorophyll</topic><topic>Chromosomes</topic><topic>Cultivars</topic><topic>Fluorescence</topic><topic>Gene mapping</topic><topic>Genetic markers</topic><topic>Heat</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>High temperature</topic><topic>Inbreeding</topic><topic>Leaf area</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Mapping</topic><topic>Marker-assisted breeding</topic><topic>Markers</topic><topic>Microsatellites</topic><topic>Molecular biology</topic><topic>Molecular markers</topic><topic>Nutrients</topic><topic>Plant biology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Polymorphism</topic><topic>Post-anthesis heat stress</topic><topic>QTL mapping</topic><topic>Quantitative trait loci</topic><topic>Senescence</topic><topic>Temperature tolerance</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><topic>Winter wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vijayalakshmi, Kolluru</creatorcontrib><creatorcontrib>Fritz, Allan K</creatorcontrib><creatorcontrib>Paulsen, Gary M</creatorcontrib><creatorcontrib>Bai, Guihua</creatorcontrib><creatorcontrib>Pandravada, Satchidanand</creatorcontrib><creatorcontrib>Gill, Bikram S</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Molecular breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vijayalakshmi, Kolluru</au><au>Fritz, Allan K</au><au>Paulsen, Gary M</au><au>Bai, Guihua</au><au>Pandravada, Satchidanand</au><au>Gill, Bikram S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature</atitle><jtitle>Molecular breeding</jtitle><stitle>Mol Breeding</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>26</volume><issue>2</issue><spage>163</spage><epage>175</epage><pages>163-175</pages><issn>1380-3743</issn><eissn>1572-9788</eissn><abstract>Senescence is a genetically programmed and environmentally influenced process resulting in the destruction of chlorophyll and remobilization of nutrients to younger or reproductive parts of plants. Delayed senescence, or stay-green, contributes to a long grain-filling period and stable yield under stress. To model senescence and identify quantitative trait loci (QTL) for the trait, a population of recombinant inbred lines (RIL) from a cross between winter wheat cultivars, ‘Ventnor' and ‘Karl 92' was evaluated for heat tolerance under optimum temperature of 20/15°C (day/night) and continuous heat stress of 30/25°C from 10 days after anthesis (DAA) until maturity. Ventnor is a heat-tolerant cultivar and Karl 92 is a relatively heat-susceptible cultivar. Green leaf area was measured and used to model percent greenness retained over the reproductive period. Chlorophyll content and chlorophyll fluorescence were recorded on flag leaves. Senescence was converted to a quantitative trait using the model. Based on the modeled parameters, the RILs were categorized into three groups. When senescence-related traits were evaluated, nine QTL for heat tolerance were found on chromosome 2A, two each on chromosomes 6A and 6B and one each on chromosome 3A, 3B, and 7A. Both parents contributed favorable alleles for most of the senescence-related traits. Microsatellite markers Xgwm356 and Xgwm5 prominently linked to the senescence-related traits may be useful in marker-assisted breeding. These and the linked AFLP (amplified fragment length polymorphism) markers XCGT.TGCG-349, XCGT.GTG-343, and XCGT.CTCG-406, if converted to STS (sequence tagged sites), can be used for further molecular dissection of the QTL for post-anthesis heat tolerance.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><doi>10.1007/s11032-009-9366-8</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-3743 |
ispartof | Molecular breeding, 2010-08, Vol.26 (2), p.163-175 |
issn | 1380-3743 1572-9788 |
language | eng |
recordid | cdi_proquest_journals_2259410796 |
source | Springer Nature - Complete Springer Journals |
subjects | Amplified fragment length polymorphism Biomedical and Life Sciences Biotechnology Chlorophyll Chromosomes Cultivars Fluorescence Gene mapping Genetic markers Heat Heat stress Heat tolerance High temperature Inbreeding Leaf area Leaves Life Sciences Mapping Marker-assisted breeding Markers Microsatellites Molecular biology Molecular markers Nutrients Plant biology Plant Genetics and Genomics Plant Pathology Plant Physiology Plant Sciences Polymorphism Post-anthesis heat stress QTL mapping Quantitative trait loci Senescence Temperature tolerance Triticum aestivum Wheat Winter wheat |
title | Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A10%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20mapping%20QTL%20for%20senescence-related%20traits%20in%20winter%20wheat%20under%20high%20temperature&rft.jtitle=Molecular%20breeding&rft.au=Vijayalakshmi,%20Kolluru&rft.date=2010-08-01&rft.volume=26&rft.issue=2&rft.spage=163&rft.epage=175&rft.pages=163-175&rft.issn=1380-3743&rft.eissn=1572-9788&rft_id=info:doi/10.1007/s11032-009-9366-8&rft_dat=%3Cproquest_cross%3E2259410796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259410796&rft_id=info:pmid/&rfr_iscdi=true |