A physically based model of dissolution of nonaqueous phase liquids in the saturated zone
The design of remediation strategies for nonaqueous phase liquid (NAPL) contaminants involves predicting the rate of NAPL dissolution. A physically based model of an idealized pore geometry was developed to predict nonaqueous phase liquid dissolution rate coefficients. A bundle of parallel pores in...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2000-05, Vol.39 (2), p.227-255 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | 2 |
container_start_page | 227 |
container_title | Transport in porous media |
container_volume | 39 |
creator | DENGEN ZHOU DILLARD, L. A BLUNT, M. J |
description | The design of remediation strategies for nonaqueous phase liquid (NAPL) contaminants involves predicting the rate of NAPL dissolution. A physically based model of an idealized pore geometry was developed to predict nonaqueous phase liquid dissolution rate coefficients. A bundle of parallel pores in series model is used to represent NAPL dissolution as a function of three processes: pore diffusion, corner diffusion, and mixing and multiple contact. The dissolution rate coefficient is expressed in terms of the modified Sherwood number (Sh′) and is a function of Peclet (Pe) number. The model captures the complex behavior of Sh′ versus Pe data for both water-wet (Powers, 1992) and NAPL-wet (Parker et al., 1991) media. For water-wet media, the observed behavior can be broken down into four distinct regions. Each region represents a different physical process controlling NAPL dissolution: the low-Pe region is controlled by pore diffusion; the low- to moderate-Pe region is a transition zone; the moderate-Pe region is controlled by mixing and multiple contact; and the high-Pe region is controlled by corner diffusion. For the high-Pe conditions typical of most column experiments, the model involves only one fitting parameter. For NAPL-wet media, NAPL dissolution is governed exclusively by corner diffusion, and the model again involves only one fitting parameter. |
doi_str_mv | 10.1023/a:1006693126316 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_2259405784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259405784</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-7eb132f43320b36e4baac6bca881bbce23fe7c32dc07f062f7e0d4e80c2b2abb3</originalsourceid><addsrcrecordid>eNotjz1PwzAQhi0EEqEws1qCNXD2OU7CVlV8SZVYYGCKzo6jukrjNk6G8usxotOrk5577l7GbgU8CJD4SE8CQOsahdQo9BnLRFFiLjSqc5aB0HWOtcBLdhXjFiDBlcrY95LvN8foLfX9kRuKruW70Lqeh463PsbQz5MPw984hIEOswtzTDuJ5L0_zL6N3A982jgeaZpHmpLhJwzuml101Ed3c8oF-3p5_ly95euP1_fVcp0TqmLKS2cEyk4hSjConTJEVhtLVSWMsU5i50qLsrVQdqBlVzpolavASiPJGFywu3_vfgzpuzg12zCPQzrZSFnUCoqyUom6P1EUU9dupMH62OxHv6Px2AgEKBDxF1v_YjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259405784</pqid></control><display><type>article</type><title>A physically based model of dissolution of nonaqueous phase liquids in the saturated zone</title><source>SpringerLink Journals - AutoHoldings</source><creator>DENGEN ZHOU ; DILLARD, L. A ; BLUNT, M. J</creator><creatorcontrib>DENGEN ZHOU ; DILLARD, L. A ; BLUNT, M. J</creatorcontrib><description>The design of remediation strategies for nonaqueous phase liquid (NAPL) contaminants involves predicting the rate of NAPL dissolution. A physically based model of an idealized pore geometry was developed to predict nonaqueous phase liquid dissolution rate coefficients. A bundle of parallel pores in series model is used to represent NAPL dissolution as a function of three processes: pore diffusion, corner diffusion, and mixing and multiple contact. The dissolution rate coefficient is expressed in terms of the modified Sherwood number (Sh′) and is a function of Peclet (Pe) number. The model captures the complex behavior of Sh′ versus Pe data for both water-wet (Powers, 1992) and NAPL-wet (Parker et al., 1991) media. For water-wet media, the observed behavior can be broken down into four distinct regions. Each region represents a different physical process controlling NAPL dissolution: the low-Pe region is controlled by pore diffusion; the low- to moderate-Pe region is a transition zone; the moderate-Pe region is controlled by mixing and multiple contact; and the high-Pe region is controlled by corner diffusion. For the high-Pe conditions typical of most column experiments, the model involves only one fitting parameter. For NAPL-wet media, NAPL dissolution is governed exclusively by corner diffusion, and the model again involves only one fitting parameter.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1023/a:1006693126316</identifier><identifier>CODEN: TPMEEI</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Contaminants ; Diffusion rate ; Dissolution ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Mathematical models ; Nonaqueous phase liquids ; Parameters ; Pollution, environment geology</subject><ispartof>Transport in porous media, 2000-05, Vol.39 (2), p.227-255</ispartof><rights>2000 INIST-CNRS</rights><rights>Transport in Porous Media is a copyright of Springer, (2000). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-7eb132f43320b36e4baac6bca881bbce23fe7c32dc07f062f7e0d4e80c2b2abb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1300533$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DENGEN ZHOU</creatorcontrib><creatorcontrib>DILLARD, L. A</creatorcontrib><creatorcontrib>BLUNT, M. J</creatorcontrib><title>A physically based model of dissolution of nonaqueous phase liquids in the saturated zone</title><title>Transport in porous media</title><description>The design of remediation strategies for nonaqueous phase liquid (NAPL) contaminants involves predicting the rate of NAPL dissolution. A physically based model of an idealized pore geometry was developed to predict nonaqueous phase liquid dissolution rate coefficients. A bundle of parallel pores in series model is used to represent NAPL dissolution as a function of three processes: pore diffusion, corner diffusion, and mixing and multiple contact. The dissolution rate coefficient is expressed in terms of the modified Sherwood number (Sh′) and is a function of Peclet (Pe) number. The model captures the complex behavior of Sh′ versus Pe data for both water-wet (Powers, 1992) and NAPL-wet (Parker et al., 1991) media. For water-wet media, the observed behavior can be broken down into four distinct regions. Each region represents a different physical process controlling NAPL dissolution: the low-Pe region is controlled by pore diffusion; the low- to moderate-Pe region is a transition zone; the moderate-Pe region is controlled by mixing and multiple contact; and the high-Pe region is controlled by corner diffusion. For the high-Pe conditions typical of most column experiments, the model involves only one fitting parameter. For NAPL-wet media, NAPL dissolution is governed exclusively by corner diffusion, and the model again involves only one fitting parameter.</description><subject>Contaminants</subject><subject>Diffusion rate</subject><subject>Dissolution</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Mathematical models</subject><subject>Nonaqueous phase liquids</subject><subject>Parameters</subject><subject>Pollution, environment geology</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotjz1PwzAQhi0EEqEws1qCNXD2OU7CVlV8SZVYYGCKzo6jukrjNk6G8usxotOrk5577l7GbgU8CJD4SE8CQOsahdQo9BnLRFFiLjSqc5aB0HWOtcBLdhXjFiDBlcrY95LvN8foLfX9kRuKruW70Lqeh463PsbQz5MPw984hIEOswtzTDuJ5L0_zL6N3A982jgeaZpHmpLhJwzuml101Ed3c8oF-3p5_ly95euP1_fVcp0TqmLKS2cEyk4hSjConTJEVhtLVSWMsU5i50qLsrVQdqBlVzpolavASiPJGFywu3_vfgzpuzg12zCPQzrZSFnUCoqyUom6P1EUU9dupMH62OxHv6Px2AgEKBDxF1v_YjU</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>DENGEN ZHOU</creator><creator>DILLARD, L. A</creator><creator>BLUNT, M. J</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20000501</creationdate><title>A physically based model of dissolution of nonaqueous phase liquids in the saturated zone</title><author>DENGEN ZHOU ; DILLARD, L. A ; BLUNT, M. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-7eb132f43320b36e4baac6bca881bbce23fe7c32dc07f062f7e0d4e80c2b2abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Contaminants</topic><topic>Diffusion rate</topic><topic>Dissolution</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Mathematical models</topic><topic>Nonaqueous phase liquids</topic><topic>Parameters</topic><topic>Pollution, environment geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DENGEN ZHOU</creatorcontrib><creatorcontrib>DILLARD, L. A</creatorcontrib><creatorcontrib>BLUNT, M. J</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DENGEN ZHOU</au><au>DILLARD, L. A</au><au>BLUNT, M. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A physically based model of dissolution of nonaqueous phase liquids in the saturated zone</atitle><jtitle>Transport in porous media</jtitle><date>2000-05-01</date><risdate>2000</risdate><volume>39</volume><issue>2</issue><spage>227</spage><epage>255</epage><pages>227-255</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><coden>TPMEEI</coden><abstract>The design of remediation strategies for nonaqueous phase liquid (NAPL) contaminants involves predicting the rate of NAPL dissolution. A physically based model of an idealized pore geometry was developed to predict nonaqueous phase liquid dissolution rate coefficients. A bundle of parallel pores in series model is used to represent NAPL dissolution as a function of three processes: pore diffusion, corner diffusion, and mixing and multiple contact. The dissolution rate coefficient is expressed in terms of the modified Sherwood number (Sh′) and is a function of Peclet (Pe) number. The model captures the complex behavior of Sh′ versus Pe data for both water-wet (Powers, 1992) and NAPL-wet (Parker et al., 1991) media. For water-wet media, the observed behavior can be broken down into four distinct regions. Each region represents a different physical process controlling NAPL dissolution: the low-Pe region is controlled by pore diffusion; the low- to moderate-Pe region is a transition zone; the moderate-Pe region is controlled by mixing and multiple contact; and the high-Pe region is controlled by corner diffusion. For the high-Pe conditions typical of most column experiments, the model involves only one fitting parameter. For NAPL-wet media, NAPL dissolution is governed exclusively by corner diffusion, and the model again involves only one fitting parameter.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/a:1006693126316</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2000-05, Vol.39 (2), p.227-255 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_proquest_journals_2259405784 |
source | SpringerLink Journals - AutoHoldings |
subjects | Contaminants Diffusion rate Dissolution Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology Mathematical models Nonaqueous phase liquids Parameters Pollution, environment geology |
title | A physically based model of dissolution of nonaqueous phase liquids in the saturated zone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20physically%20based%20model%20of%20dissolution%20of%20nonaqueous%20phase%20liquids%20in%20the%20saturated%20zone&rft.jtitle=Transport%20in%20porous%20media&rft.au=DENGEN%20ZHOU&rft.date=2000-05-01&rft.volume=39&rft.issue=2&rft.spage=227&rft.epage=255&rft.pages=227-255&rft.issn=0169-3913&rft.eissn=1573-1634&rft.coden=TPMEEI&rft_id=info:doi/10.1023/a:1006693126316&rft_dat=%3Cproquest_pasca%3E2259405784%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259405784&rft_id=info:pmid/&rfr_iscdi=true |