A physically based model of dissolution of nonaqueous phase liquids in the saturated zone

The design of remediation strategies for nonaqueous phase liquid (NAPL) contaminants involves predicting the rate of NAPL dissolution. A physically based model of an idealized pore geometry was developed to predict nonaqueous phase liquid dissolution rate coefficients. A bundle of parallel pores in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2000-05, Vol.39 (2), p.227-255
Hauptverfasser: DENGEN ZHOU, DILLARD, L. A, BLUNT, M. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 2
container_start_page 227
container_title Transport in porous media
container_volume 39
creator DENGEN ZHOU
DILLARD, L. A
BLUNT, M. J
description The design of remediation strategies for nonaqueous phase liquid (NAPL) contaminants involves predicting the rate of NAPL dissolution. A physically based model of an idealized pore geometry was developed to predict nonaqueous phase liquid dissolution rate coefficients. A bundle of parallel pores in series model is used to represent NAPL dissolution as a function of three processes: pore diffusion, corner diffusion, and mixing and multiple contact. The dissolution rate coefficient is expressed in terms of the modified Sherwood number (Sh′) and is a function of Peclet (Pe) number. The model captures the complex behavior of Sh′ versus Pe data for both water-wet (Powers, 1992) and NAPL-wet (Parker et al., 1991) media. For water-wet media, the observed behavior can be broken down into four distinct regions. Each region represents a different physical process controlling NAPL dissolution: the low-Pe region is controlled by pore diffusion; the low- to moderate-Pe region is a transition zone; the moderate-Pe region is controlled by mixing and multiple contact; and the high-Pe region is controlled by corner diffusion. For the high-Pe conditions typical of most column experiments, the model involves only one fitting parameter. For NAPL-wet media, NAPL dissolution is governed exclusively by corner diffusion, and the model again involves only one fitting parameter.
doi_str_mv 10.1023/a:1006693126316
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_2259405784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259405784</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-7eb132f43320b36e4baac6bca881bbce23fe7c32dc07f062f7e0d4e80c2b2abb3</originalsourceid><addsrcrecordid>eNotjz1PwzAQhi0EEqEws1qCNXD2OU7CVlV8SZVYYGCKzo6jukrjNk6G8usxotOrk5577l7GbgU8CJD4SE8CQOsahdQo9BnLRFFiLjSqc5aB0HWOtcBLdhXjFiDBlcrY95LvN8foLfX9kRuKruW70Lqeh463PsbQz5MPw984hIEOswtzTDuJ5L0_zL6N3A982jgeaZpHmpLhJwzuml101Ed3c8oF-3p5_ly95euP1_fVcp0TqmLKS2cEyk4hSjConTJEVhtLVSWMsU5i50qLsrVQdqBlVzpolavASiPJGFywu3_vfgzpuzg12zCPQzrZSFnUCoqyUom6P1EUU9dupMH62OxHv6Px2AgEKBDxF1v_YjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259405784</pqid></control><display><type>article</type><title>A physically based model of dissolution of nonaqueous phase liquids in the saturated zone</title><source>SpringerLink Journals - AutoHoldings</source><creator>DENGEN ZHOU ; DILLARD, L. A ; BLUNT, M. J</creator><creatorcontrib>DENGEN ZHOU ; DILLARD, L. A ; BLUNT, M. J</creatorcontrib><description>The design of remediation strategies for nonaqueous phase liquid (NAPL) contaminants involves predicting the rate of NAPL dissolution. A physically based model of an idealized pore geometry was developed to predict nonaqueous phase liquid dissolution rate coefficients. A bundle of parallel pores in series model is used to represent NAPL dissolution as a function of three processes: pore diffusion, corner diffusion, and mixing and multiple contact. The dissolution rate coefficient is expressed in terms of the modified Sherwood number (Sh′) and is a function of Peclet (Pe) number. The model captures the complex behavior of Sh′ versus Pe data for both water-wet (Powers, 1992) and NAPL-wet (Parker et al., 1991) media. For water-wet media, the observed behavior can be broken down into four distinct regions. Each region represents a different physical process controlling NAPL dissolution: the low-Pe region is controlled by pore diffusion; the low- to moderate-Pe region is a transition zone; the moderate-Pe region is controlled by mixing and multiple contact; and the high-Pe region is controlled by corner diffusion. For the high-Pe conditions typical of most column experiments, the model involves only one fitting parameter. For NAPL-wet media, NAPL dissolution is governed exclusively by corner diffusion, and the model again involves only one fitting parameter.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1023/a:1006693126316</identifier><identifier>CODEN: TPMEEI</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Contaminants ; Diffusion rate ; Dissolution ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Mathematical models ; Nonaqueous phase liquids ; Parameters ; Pollution, environment geology</subject><ispartof>Transport in porous media, 2000-05, Vol.39 (2), p.227-255</ispartof><rights>2000 INIST-CNRS</rights><rights>Transport in Porous Media is a copyright of Springer, (2000). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-7eb132f43320b36e4baac6bca881bbce23fe7c32dc07f062f7e0d4e80c2b2abb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1300533$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DENGEN ZHOU</creatorcontrib><creatorcontrib>DILLARD, L. A</creatorcontrib><creatorcontrib>BLUNT, M. J</creatorcontrib><title>A physically based model of dissolution of nonaqueous phase liquids in the saturated zone</title><title>Transport in porous media</title><description>The design of remediation strategies for nonaqueous phase liquid (NAPL) contaminants involves predicting the rate of NAPL dissolution. A physically based model of an idealized pore geometry was developed to predict nonaqueous phase liquid dissolution rate coefficients. A bundle of parallel pores in series model is used to represent NAPL dissolution as a function of three processes: pore diffusion, corner diffusion, and mixing and multiple contact. The dissolution rate coefficient is expressed in terms of the modified Sherwood number (Sh′) and is a function of Peclet (Pe) number. The model captures the complex behavior of Sh′ versus Pe data for both water-wet (Powers, 1992) and NAPL-wet (Parker et al., 1991) media. For water-wet media, the observed behavior can be broken down into four distinct regions. Each region represents a different physical process controlling NAPL dissolution: the low-Pe region is controlled by pore diffusion; the low- to moderate-Pe region is a transition zone; the moderate-Pe region is controlled by mixing and multiple contact; and the high-Pe region is controlled by corner diffusion. For the high-Pe conditions typical of most column experiments, the model involves only one fitting parameter. For NAPL-wet media, NAPL dissolution is governed exclusively by corner diffusion, and the model again involves only one fitting parameter.</description><subject>Contaminants</subject><subject>Diffusion rate</subject><subject>Dissolution</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Mathematical models</subject><subject>Nonaqueous phase liquids</subject><subject>Parameters</subject><subject>Pollution, environment geology</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotjz1PwzAQhi0EEqEws1qCNXD2OU7CVlV8SZVYYGCKzo6jukrjNk6G8usxotOrk5577l7GbgU8CJD4SE8CQOsahdQo9BnLRFFiLjSqc5aB0HWOtcBLdhXjFiDBlcrY95LvN8foLfX9kRuKruW70Lqeh463PsbQz5MPw984hIEOswtzTDuJ5L0_zL6N3A982jgeaZpHmpLhJwzuml101Ed3c8oF-3p5_ly95euP1_fVcp0TqmLKS2cEyk4hSjConTJEVhtLVSWMsU5i50qLsrVQdqBlVzpolavASiPJGFywu3_vfgzpuzg12zCPQzrZSFnUCoqyUom6P1EUU9dupMH62OxHv6Px2AgEKBDxF1v_YjU</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>DENGEN ZHOU</creator><creator>DILLARD, L. A</creator><creator>BLUNT, M. J</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20000501</creationdate><title>A physically based model of dissolution of nonaqueous phase liquids in the saturated zone</title><author>DENGEN ZHOU ; DILLARD, L. A ; BLUNT, M. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-7eb132f43320b36e4baac6bca881bbce23fe7c32dc07f062f7e0d4e80c2b2abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Contaminants</topic><topic>Diffusion rate</topic><topic>Dissolution</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Mathematical models</topic><topic>Nonaqueous phase liquids</topic><topic>Parameters</topic><topic>Pollution, environment geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DENGEN ZHOU</creatorcontrib><creatorcontrib>DILLARD, L. A</creatorcontrib><creatorcontrib>BLUNT, M. J</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DENGEN ZHOU</au><au>DILLARD, L. A</au><au>BLUNT, M. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A physically based model of dissolution of nonaqueous phase liquids in the saturated zone</atitle><jtitle>Transport in porous media</jtitle><date>2000-05-01</date><risdate>2000</risdate><volume>39</volume><issue>2</issue><spage>227</spage><epage>255</epage><pages>227-255</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><coden>TPMEEI</coden><abstract>The design of remediation strategies for nonaqueous phase liquid (NAPL) contaminants involves predicting the rate of NAPL dissolution. A physically based model of an idealized pore geometry was developed to predict nonaqueous phase liquid dissolution rate coefficients. A bundle of parallel pores in series model is used to represent NAPL dissolution as a function of three processes: pore diffusion, corner diffusion, and mixing and multiple contact. The dissolution rate coefficient is expressed in terms of the modified Sherwood number (Sh′) and is a function of Peclet (Pe) number. The model captures the complex behavior of Sh′ versus Pe data for both water-wet (Powers, 1992) and NAPL-wet (Parker et al., 1991) media. For water-wet media, the observed behavior can be broken down into four distinct regions. Each region represents a different physical process controlling NAPL dissolution: the low-Pe region is controlled by pore diffusion; the low- to moderate-Pe region is a transition zone; the moderate-Pe region is controlled by mixing and multiple contact; and the high-Pe region is controlled by corner diffusion. For the high-Pe conditions typical of most column experiments, the model involves only one fitting parameter. For NAPL-wet media, NAPL dissolution is governed exclusively by corner diffusion, and the model again involves only one fitting parameter.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/a:1006693126316</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2000-05, Vol.39 (2), p.227-255
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2259405784
source SpringerLink Journals - AutoHoldings
subjects Contaminants
Diffusion rate
Dissolution
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Mathematical models
Nonaqueous phase liquids
Parameters
Pollution, environment geology
title A physically based model of dissolution of nonaqueous phase liquids in the saturated zone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20physically%20based%20model%20of%20dissolution%20of%20nonaqueous%20phase%20liquids%20in%20the%20saturated%20zone&rft.jtitle=Transport%20in%20porous%20media&rft.au=DENGEN%20ZHOU&rft.date=2000-05-01&rft.volume=39&rft.issue=2&rft.spage=227&rft.epage=255&rft.pages=227-255&rft.issn=0169-3913&rft.eissn=1573-1634&rft.coden=TPMEEI&rft_id=info:doi/10.1023/a:1006693126316&rft_dat=%3Cproquest_pasca%3E2259405784%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259405784&rft_id=info:pmid/&rfr_iscdi=true