Contributions to theoretical/experimental developments in shock waves propagation in porous media
Macroscopic balance equations of mass, momentum and energy for compressible Newtonian fluids within a thermoelastic solid matrix are developed as the theoretical basis for wave motion in multiphase deformable porous media. This leads to the rigorous development of the extended Forchheimer terms acco...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 1999-03, Vol.34 (1-3), p.63-100 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | 1-3 |
container_start_page | 63 |
container_title | Transport in porous media |
container_volume | 34 |
creator | SOREK, S LEVY, A BEN-DOR, G SMEULDERS, D |
description | Macroscopic balance equations of mass, momentum and energy for compressible Newtonian fluids within a thermoelastic solid matrix are developed as the theoretical basis for wave motion in multiphase deformable porous media. This leads to the rigorous development of the extended Forchheimer terms accounting for the momentum exchange between the phases through the solid-fluid interfaces. An additional relation presenting the deviation (assumed of a lower order of magnitude) from the macroscopic momentum balance equation, is also presented. Nondimensional investigation of the phases' macroscopic balance equations, yield four evolution periods associated with different dominant balance equations which are obtained following an abrupt change in fluid's pressure and temperature. During the second evolution period, the inertial terms are dominant. As a result the momentum balance equations reduce to nonlinear wave equations. Various analytical solutions of these equations are described for the 1-D case. Comparison with literature and verification with shock tube experiments, serve as validation of the developed theory and the computer code.A 1-D TVD-based numerical study of shock wave propagation in saturated porous media, is presented. A parametric investigation using the developed computer code is also given. |
doi_str_mv | 10.1023/A:1006553206369 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_2259405046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259405046</sourcerecordid><originalsourceid>FETCH-LOGICAL-a211t-6df1ab570279c2d8ff368a8555e020082011cf43cd168842567346e251e9d7093</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EEqFw5moJrqFeP2NuVcVLqsQFzpGbONQljYPtFPj3uKKn1Wo_zc4MQtdA7oBQNl_cAyFSCEaJZFKfoAKEYiVIxk9RQUDqkmlg5-gixi0hGa54gczSDym49ZScHyJOHqeN9cEm15h-bn9GG9zODsn0uLV72_vxsEXsBhw3vvnE32ZvIx6DH82HOYgcTqMPfop4Z1tnLtFZZ_por45zht4fH96Wz-Xq9elluViVhgKkUrYdmLVQhCrd0LbqOiYrUwkhLKHZKyUATcdZ04KsKk6FVIxLSwVY3Sqi2Qzd_OtmL1-Tjane-ikM-WVNqdCcCMJlpm6PlIk5YRfM0LhYjzmlCb81KKlyg-wP_Z5j0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259405046</pqid></control><display><type>article</type><title>Contributions to theoretical/experimental developments in shock waves propagation in porous media</title><source>SpringerLink Journals - AutoHoldings</source><creator>SOREK, S ; LEVY, A ; BEN-DOR, G ; SMEULDERS, D</creator><creatorcontrib>SOREK, S ; LEVY, A ; BEN-DOR, G ; SMEULDERS, D</creatorcontrib><description>Macroscopic balance equations of mass, momentum and energy for compressible Newtonian fluids within a thermoelastic solid matrix are developed as the theoretical basis for wave motion in multiphase deformable porous media. This leads to the rigorous development of the extended Forchheimer terms accounting for the momentum exchange between the phases through the solid-fluid interfaces. An additional relation presenting the deviation (assumed of a lower order of magnitude) from the macroscopic momentum balance equation, is also presented. Nondimensional investigation of the phases' macroscopic balance equations, yield four evolution periods associated with different dominant balance equations which are obtained following an abrupt change in fluid's pressure and temperature. During the second evolution period, the inertial terms are dominant. As a result the momentum balance equations reduce to nonlinear wave equations. Various analytical solutions of these equations are described for the 1-D case. Comparison with literature and verification with shock tube experiments, serve as validation of the developed theory and the computer code.A 1-D TVD-based numerical study of shock wave propagation in saturated porous media, is presented. A parametric investigation using the developed computer code is also given.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1023/A:1006553206369</identifier><identifier>CODEN: TPMEEI</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Compressibility ; Computational fluid dynamics ; Deformation ; Earth sciences ; Earth, ocean, space ; Evolution ; Exact sciences and technology ; Exact solutions ; Formability ; Hydrogeology ; Hydrology. Hydrogeology ; Markov analysis ; Momentum ; Newtonian fluids ; Nonlinear analysis ; Nonlinear equations ; Porous media ; Shock wave propagation ; Shock waves ; Wave equations ; Waves</subject><ispartof>Transport in porous media, 1999-03, Vol.34 (1-3), p.63-100</ispartof><rights>1999 INIST-CNRS</rights><rights>Transport in Porous Media is a copyright of Springer, (1999). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a211t-6df1ab570279c2d8ff368a8555e020082011cf43cd168842567346e251e9d7093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1767532$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SOREK, S</creatorcontrib><creatorcontrib>LEVY, A</creatorcontrib><creatorcontrib>BEN-DOR, G</creatorcontrib><creatorcontrib>SMEULDERS, D</creatorcontrib><title>Contributions to theoretical/experimental developments in shock waves propagation in porous media</title><title>Transport in porous media</title><description>Macroscopic balance equations of mass, momentum and energy for compressible Newtonian fluids within a thermoelastic solid matrix are developed as the theoretical basis for wave motion in multiphase deformable porous media. This leads to the rigorous development of the extended Forchheimer terms accounting for the momentum exchange between the phases through the solid-fluid interfaces. An additional relation presenting the deviation (assumed of a lower order of magnitude) from the macroscopic momentum balance equation, is also presented. Nondimensional investigation of the phases' macroscopic balance equations, yield four evolution periods associated with different dominant balance equations which are obtained following an abrupt change in fluid's pressure and temperature. During the second evolution period, the inertial terms are dominant. As a result the momentum balance equations reduce to nonlinear wave equations. Various analytical solutions of these equations are described for the 1-D case. Comparison with literature and verification with shock tube experiments, serve as validation of the developed theory and the computer code.A 1-D TVD-based numerical study of shock wave propagation in saturated porous media, is presented. A parametric investigation using the developed computer code is also given.</description><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Deformation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Formability</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Markov analysis</subject><subject>Momentum</subject><subject>Newtonian fluids</subject><subject>Nonlinear analysis</subject><subject>Nonlinear equations</subject><subject>Porous media</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Wave equations</subject><subject>Waves</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkEtPwzAQhC0EEqFw5moJrqFeP2NuVcVLqsQFzpGbONQljYPtFPj3uKKn1Wo_zc4MQtdA7oBQNl_cAyFSCEaJZFKfoAKEYiVIxk9RQUDqkmlg5-gixi0hGa54gczSDym49ZScHyJOHqeN9cEm15h-bn9GG9zODsn0uLV72_vxsEXsBhw3vvnE32ZvIx6DH82HOYgcTqMPfop4Z1tnLtFZZ_por45zht4fH96Wz-Xq9elluViVhgKkUrYdmLVQhCrd0LbqOiYrUwkhLKHZKyUATcdZ04KsKk6FVIxLSwVY3Sqi2Qzd_OtmL1-Tjane-ikM-WVNqdCcCMJlpm6PlIk5YRfM0LhYjzmlCb81KKlyg-wP_Z5j0Q</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>SOREK, S</creator><creator>LEVY, A</creator><creator>BEN-DOR, G</creator><creator>SMEULDERS, D</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19990301</creationdate><title>Contributions to theoretical/experimental developments in shock waves propagation in porous media</title><author>SOREK, S ; LEVY, A ; BEN-DOR, G ; SMEULDERS, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a211t-6df1ab570279c2d8ff368a8555e020082011cf43cd168842567346e251e9d7093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Deformation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Formability</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Markov analysis</topic><topic>Momentum</topic><topic>Newtonian fluids</topic><topic>Nonlinear analysis</topic><topic>Nonlinear equations</topic><topic>Porous media</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Wave equations</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SOREK, S</creatorcontrib><creatorcontrib>LEVY, A</creatorcontrib><creatorcontrib>BEN-DOR, G</creatorcontrib><creatorcontrib>SMEULDERS, D</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SOREK, S</au><au>LEVY, A</au><au>BEN-DOR, G</au><au>SMEULDERS, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contributions to theoretical/experimental developments in shock waves propagation in porous media</atitle><jtitle>Transport in porous media</jtitle><date>1999-03-01</date><risdate>1999</risdate><volume>34</volume><issue>1-3</issue><spage>63</spage><epage>100</epage><pages>63-100</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><coden>TPMEEI</coden><abstract>Macroscopic balance equations of mass, momentum and energy for compressible Newtonian fluids within a thermoelastic solid matrix are developed as the theoretical basis for wave motion in multiphase deformable porous media. This leads to the rigorous development of the extended Forchheimer terms accounting for the momentum exchange between the phases through the solid-fluid interfaces. An additional relation presenting the deviation (assumed of a lower order of magnitude) from the macroscopic momentum balance equation, is also presented. Nondimensional investigation of the phases' macroscopic balance equations, yield four evolution periods associated with different dominant balance equations which are obtained following an abrupt change in fluid's pressure and temperature. During the second evolution period, the inertial terms are dominant. As a result the momentum balance equations reduce to nonlinear wave equations. Various analytical solutions of these equations are described for the 1-D case. Comparison with literature and verification with shock tube experiments, serve as validation of the developed theory and the computer code.A 1-D TVD-based numerical study of shock wave propagation in saturated porous media, is presented. A parametric investigation using the developed computer code is also given.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/A:1006553206369</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 1999-03, Vol.34 (1-3), p.63-100 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_proquest_journals_2259405046 |
source | SpringerLink Journals - AutoHoldings |
subjects | Compressibility Computational fluid dynamics Deformation Earth sciences Earth, ocean, space Evolution Exact sciences and technology Exact solutions Formability Hydrogeology Hydrology. Hydrogeology Markov analysis Momentum Newtonian fluids Nonlinear analysis Nonlinear equations Porous media Shock wave propagation Shock waves Wave equations Waves |
title | Contributions to theoretical/experimental developments in shock waves propagation in porous media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contributions%20to%20theoretical/experimental%20developments%20in%20shock%20waves%20propagation%20in%20porous%20media&rft.jtitle=Transport%20in%20porous%20media&rft.au=SOREK,%20S&rft.date=1999-03-01&rft.volume=34&rft.issue=1-3&rft.spage=63&rft.epage=100&rft.pages=63-100&rft.issn=0169-3913&rft.eissn=1573-1634&rft.coden=TPMEEI&rft_id=info:doi/10.1023/A:1006553206369&rft_dat=%3Cproquest_pasca%3E2259405046%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259405046&rft_id=info:pmid/&rfr_iscdi=true |