Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping

Genetic dissection of grain weight in bread wheat was undertaken through both genome-wide quantitative trait locus (QTL) interval mapping and association mapping. QTL interval mapping involved preparation of a framework linkage map consisting of 294 loci {194 simple sequence repeats (SSRs), 86 ampli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular breeding 2012-04, Vol.29 (4), p.963-972
Hauptverfasser: Mir, R. R, Kumar, N, Jaiswal, V, Girdharwal, N, Prasad, M, Balyan, H. S, Gupta, P. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 972
container_issue 4
container_start_page 963
container_title Molecular breeding
container_volume 29
creator Mir, R. R
Kumar, N
Jaiswal, V
Girdharwal, N
Prasad, M
Balyan, H. S
Gupta, P. K
description Genetic dissection of grain weight in bread wheat was undertaken through both genome-wide quantitative trait locus (QTL) interval mapping and association mapping. QTL interval mapping involved preparation of a framework linkage map consisting of 294 loci {194 simple sequence repeats (SSRs), 86 amplified fragment length polymorphisms (AFLPs) and 14 selective amplifications of microsatellite polymorphic loci (SAMPL)} using a bi-parental recombinant inbred line (RIL) mapping population derived from Rye Selection111 × Chinese Spring. Using the genotypic data and phenotypic data on grain weight (GW) of RILs collected over six environments, genome-wide single locus QTL analysis was conducted to identify main effect QTL. This led to identification of as many as ten QTL including four major QTL (three QTL were stable), each contributing >20% phenotypic variation (PV) for GW. The above study was supplemented with association mapping, which allowed identification of 11 new markers in the genomic regions that were not reported earlier to harbour any QTL for GW. It also allowed identification of closely linked markers for six known QTL, and validation of eight QTL reported earlier. The QTL identified through QTL interval mapping and association mapping may prove useful in marker-assisted selection (MAS) for the development of cultivars with high GW in bread wheat.
doi_str_mv 10.1007/s11032-011-9693-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259401091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259401091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-2173a047549f19e7441eef8d77321b8c976d0556e77844a90a91b622fcfb80343</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosouH78AE8GPFczSdo0RxFdhQUP6jnMtmkb2W1qkrr4781awZunmcPzvAPvZNkF0GugVN4EAMpZTgFyVSqei4NsAYVkuZJVdZh2XtGcS8GPs5MQ3mlyVFkusrA0g4m2Jo0NwdTRuoG4lnQe7UB2xnZ9JGlbe4MN2fUGI4m9d1PXk48Jh2gjRvtpSExCJBtXTyHx0fhP3BAcGoIhuNriT_AWx9EO3Vl21OImmPPfeZq9Pdy_3j3mq-fl093tKq95xWPOQHKkQhZCtaCMFAKMaatGSs5gXdVKlg0titJIWQmBiqKCdclYW7frinLBT7OrOXf07mMyIep3N_khndSMFUpQoAoSBTNVexeCN60evd2i_9JA9b5bPXerU7d6363eJ7PZCYkdOuP_kv-TLmepRaex8zbotxdGQaRnlGVBBf8GqRiGMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259401091</pqid></control><display><type>article</type><title>Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mir, R. R ; Kumar, N ; Jaiswal, V ; Girdharwal, N ; Prasad, M ; Balyan, H. S ; Gupta, P. K</creator><creatorcontrib>Mir, R. R ; Kumar, N ; Jaiswal, V ; Girdharwal, N ; Prasad, M ; Balyan, H. S ; Gupta, P. K</creatorcontrib><description>Genetic dissection of grain weight in bread wheat was undertaken through both genome-wide quantitative trait locus (QTL) interval mapping and association mapping. QTL interval mapping involved preparation of a framework linkage map consisting of 294 loci {194 simple sequence repeats (SSRs), 86 amplified fragment length polymorphisms (AFLPs) and 14 selective amplifications of microsatellite polymorphic loci (SAMPL)} using a bi-parental recombinant inbred line (RIL) mapping population derived from Rye Selection111 × Chinese Spring. Using the genotypic data and phenotypic data on grain weight (GW) of RILs collected over six environments, genome-wide single locus QTL analysis was conducted to identify main effect QTL. This led to identification of as many as ten QTL including four major QTL (three QTL were stable), each contributing &gt;20% phenotypic variation (PV) for GW. The above study was supplemented with association mapping, which allowed identification of 11 new markers in the genomic regions that were not reported earlier to harbour any QTL for GW. It also allowed identification of closely linked markers for six known QTL, and validation of eight QTL reported earlier. The QTL identified through QTL interval mapping and association mapping may prove useful in marker-assisted selection (MAS) for the development of cultivars with high GW in bread wheat.</description><identifier>ISSN: 1380-3743</identifier><identifier>EISSN: 1572-9788</identifier><identifier>DOI: 10.1007/s11032-011-9693-4</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Amplification ; amplified fragment length polymorphism ; Biomedical and Life Sciences ; Biotechnology ; Bread ; chromosome mapping ; Cultivars ; Dissection ; Gene mapping ; genetic markers ; Genomes ; Grain ; inbred lines ; Inbreeding ; Life Sciences ; loci ; Mapping ; Marker-assisted selection ; Markers ; microsatellite repeats ; Microsatellites ; Molecular biology ; phenotypic variation ; Phenotypic variations ; Plant biology ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Quantitative trait loci ; Simple sequence repeats ; Weight ; Wheat</subject><ispartof>Molecular breeding, 2012-04, Vol.29 (4), p.963-972</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>Molecular Breeding is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-2173a047549f19e7441eef8d77321b8c976d0556e77844a90a91b622fcfb80343</citedby><cites>FETCH-LOGICAL-c383t-2173a047549f19e7441eef8d77321b8c976d0556e77844a90a91b622fcfb80343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11032-011-9693-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11032-011-9693-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mir, R. R</creatorcontrib><creatorcontrib>Kumar, N</creatorcontrib><creatorcontrib>Jaiswal, V</creatorcontrib><creatorcontrib>Girdharwal, N</creatorcontrib><creatorcontrib>Prasad, M</creatorcontrib><creatorcontrib>Balyan, H. S</creatorcontrib><creatorcontrib>Gupta, P. K</creatorcontrib><title>Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping</title><title>Molecular breeding</title><addtitle>Mol Breeding</addtitle><description>Genetic dissection of grain weight in bread wheat was undertaken through both genome-wide quantitative trait locus (QTL) interval mapping and association mapping. QTL interval mapping involved preparation of a framework linkage map consisting of 294 loci {194 simple sequence repeats (SSRs), 86 amplified fragment length polymorphisms (AFLPs) and 14 selective amplifications of microsatellite polymorphic loci (SAMPL)} using a bi-parental recombinant inbred line (RIL) mapping population derived from Rye Selection111 × Chinese Spring. Using the genotypic data and phenotypic data on grain weight (GW) of RILs collected over six environments, genome-wide single locus QTL analysis was conducted to identify main effect QTL. This led to identification of as many as ten QTL including four major QTL (three QTL were stable), each contributing &gt;20% phenotypic variation (PV) for GW. The above study was supplemented with association mapping, which allowed identification of 11 new markers in the genomic regions that were not reported earlier to harbour any QTL for GW. It also allowed identification of closely linked markers for six known QTL, and validation of eight QTL reported earlier. The QTL identified through QTL interval mapping and association mapping may prove useful in marker-assisted selection (MAS) for the development of cultivars with high GW in bread wheat.</description><subject>Amplification</subject><subject>amplified fragment length polymorphism</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Bread</subject><subject>chromosome mapping</subject><subject>Cultivars</subject><subject>Dissection</subject><subject>Gene mapping</subject><subject>genetic markers</subject><subject>Genomes</subject><subject>Grain</subject><subject>inbred lines</subject><subject>Inbreeding</subject><subject>Life Sciences</subject><subject>loci</subject><subject>Mapping</subject><subject>Marker-assisted selection</subject><subject>Markers</subject><subject>microsatellite repeats</subject><subject>Microsatellites</subject><subject>Molecular biology</subject><subject>phenotypic variation</subject><subject>Phenotypic variations</subject><subject>Plant biology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Quantitative trait loci</subject><subject>Simple sequence repeats</subject><subject>Weight</subject><subject>Wheat</subject><issn>1380-3743</issn><issn>1572-9788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LxDAQhosouH78AE8GPFczSdo0RxFdhQUP6jnMtmkb2W1qkrr4781awZunmcPzvAPvZNkF0GugVN4EAMpZTgFyVSqei4NsAYVkuZJVdZh2XtGcS8GPs5MQ3mlyVFkusrA0g4m2Jo0NwdTRuoG4lnQe7UB2xnZ9JGlbe4MN2fUGI4m9d1PXk48Jh2gjRvtpSExCJBtXTyHx0fhP3BAcGoIhuNriT_AWx9EO3Vl21OImmPPfeZq9Pdy_3j3mq-fl093tKq95xWPOQHKkQhZCtaCMFAKMaatGSs5gXdVKlg0titJIWQmBiqKCdclYW7frinLBT7OrOXf07mMyIep3N_khndSMFUpQoAoSBTNVexeCN60evd2i_9JA9b5bPXerU7d6363eJ7PZCYkdOuP_kv-TLmepRaex8zbotxdGQaRnlGVBBf8GqRiGMQ</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Mir, R. R</creator><creator>Kumar, N</creator><creator>Jaiswal, V</creator><creator>Girdharwal, N</creator><creator>Prasad, M</creator><creator>Balyan, H. S</creator><creator>Gupta, P. K</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20120401</creationdate><title>Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping</title><author>Mir, R. R ; Kumar, N ; Jaiswal, V ; Girdharwal, N ; Prasad, M ; Balyan, H. S ; Gupta, P. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-2173a047549f19e7441eef8d77321b8c976d0556e77844a90a91b622fcfb80343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amplification</topic><topic>amplified fragment length polymorphism</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Bread</topic><topic>chromosome mapping</topic><topic>Cultivars</topic><topic>Dissection</topic><topic>Gene mapping</topic><topic>genetic markers</topic><topic>Genomes</topic><topic>Grain</topic><topic>inbred lines</topic><topic>Inbreeding</topic><topic>Life Sciences</topic><topic>loci</topic><topic>Mapping</topic><topic>Marker-assisted selection</topic><topic>Markers</topic><topic>microsatellite repeats</topic><topic>Microsatellites</topic><topic>Molecular biology</topic><topic>phenotypic variation</topic><topic>Phenotypic variations</topic><topic>Plant biology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Quantitative trait loci</topic><topic>Simple sequence repeats</topic><topic>Weight</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mir, R. R</creatorcontrib><creatorcontrib>Kumar, N</creatorcontrib><creatorcontrib>Jaiswal, V</creatorcontrib><creatorcontrib>Girdharwal, N</creatorcontrib><creatorcontrib>Prasad, M</creatorcontrib><creatorcontrib>Balyan, H. S</creatorcontrib><creatorcontrib>Gupta, P. K</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Molecular breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mir, R. R</au><au>Kumar, N</au><au>Jaiswal, V</au><au>Girdharwal, N</au><au>Prasad, M</au><au>Balyan, H. S</au><au>Gupta, P. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping</atitle><jtitle>Molecular breeding</jtitle><stitle>Mol Breeding</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>29</volume><issue>4</issue><spage>963</spage><epage>972</epage><pages>963-972</pages><issn>1380-3743</issn><eissn>1572-9788</eissn><abstract>Genetic dissection of grain weight in bread wheat was undertaken through both genome-wide quantitative trait locus (QTL) interval mapping and association mapping. QTL interval mapping involved preparation of a framework linkage map consisting of 294 loci {194 simple sequence repeats (SSRs), 86 amplified fragment length polymorphisms (AFLPs) and 14 selective amplifications of microsatellite polymorphic loci (SAMPL)} using a bi-parental recombinant inbred line (RIL) mapping population derived from Rye Selection111 × Chinese Spring. Using the genotypic data and phenotypic data on grain weight (GW) of RILs collected over six environments, genome-wide single locus QTL analysis was conducted to identify main effect QTL. This led to identification of as many as ten QTL including four major QTL (three QTL were stable), each contributing &gt;20% phenotypic variation (PV) for GW. The above study was supplemented with association mapping, which allowed identification of 11 new markers in the genomic regions that were not reported earlier to harbour any QTL for GW. It also allowed identification of closely linked markers for six known QTL, and validation of eight QTL reported earlier. The QTL identified through QTL interval mapping and association mapping may prove useful in marker-assisted selection (MAS) for the development of cultivars with high GW in bread wheat.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s11032-011-9693-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1380-3743
ispartof Molecular breeding, 2012-04, Vol.29 (4), p.963-972
issn 1380-3743
1572-9788
language eng
recordid cdi_proquest_journals_2259401091
source SpringerLink Journals - AutoHoldings
subjects Amplification
amplified fragment length polymorphism
Biomedical and Life Sciences
Biotechnology
Bread
chromosome mapping
Cultivars
Dissection
Gene mapping
genetic markers
Genomes
Grain
inbred lines
Inbreeding
Life Sciences
loci
Mapping
Marker-assisted selection
Markers
microsatellite repeats
Microsatellites
Molecular biology
phenotypic variation
Phenotypic variations
Plant biology
Plant Genetics and Genomics
Plant Pathology
Plant Physiology
Plant Sciences
Quantitative trait loci
Simple sequence repeats
Weight
Wheat
title Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20dissection%20of%20grain%20weight%20in%20bread%20wheat%20through%20quantitative%20trait%20locus%20interval%20and%20association%20mapping&rft.jtitle=Molecular%20breeding&rft.au=Mir,%20R.%20R&rft.date=2012-04-01&rft.volume=29&rft.issue=4&rft.spage=963&rft.epage=972&rft.pages=963-972&rft.issn=1380-3743&rft.eissn=1572-9788&rft_id=info:doi/10.1007/s11032-011-9693-4&rft_dat=%3Cproquest_cross%3E2259401091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259401091&rft_id=info:pmid/&rfr_iscdi=true