Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping
Genetic dissection of grain weight in bread wheat was undertaken through both genome-wide quantitative trait locus (QTL) interval mapping and association mapping. QTL interval mapping involved preparation of a framework linkage map consisting of 294 loci {194 simple sequence repeats (SSRs), 86 ampli...
Gespeichert in:
Veröffentlicht in: | Molecular breeding 2012-04, Vol.29 (4), p.963-972 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 972 |
---|---|
container_issue | 4 |
container_start_page | 963 |
container_title | Molecular breeding |
container_volume | 29 |
creator | Mir, R. R Kumar, N Jaiswal, V Girdharwal, N Prasad, M Balyan, H. S Gupta, P. K |
description | Genetic dissection of grain weight in bread wheat was undertaken through both genome-wide quantitative trait locus (QTL) interval mapping and association mapping. QTL interval mapping involved preparation of a framework linkage map consisting of 294 loci {194 simple sequence repeats (SSRs), 86 amplified fragment length polymorphisms (AFLPs) and 14 selective amplifications of microsatellite polymorphic loci (SAMPL)} using a bi-parental recombinant inbred line (RIL) mapping population derived from Rye Selection111 × Chinese Spring. Using the genotypic data and phenotypic data on grain weight (GW) of RILs collected over six environments, genome-wide single locus QTL analysis was conducted to identify main effect QTL. This led to identification of as many as ten QTL including four major QTL (three QTL were stable), each contributing >20% phenotypic variation (PV) for GW. The above study was supplemented with association mapping, which allowed identification of 11 new markers in the genomic regions that were not reported earlier to harbour any QTL for GW. It also allowed identification of closely linked markers for six known QTL, and validation of eight QTL reported earlier. The QTL identified through QTL interval mapping and association mapping may prove useful in marker-assisted selection (MAS) for the development of cultivars with high GW in bread wheat. |
doi_str_mv | 10.1007/s11032-011-9693-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259401091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259401091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-2173a047549f19e7441eef8d77321b8c976d0556e77844a90a91b622fcfb80343</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosouH78AE8GPFczSdo0RxFdhQUP6jnMtmkb2W1qkrr4781awZunmcPzvAPvZNkF0GugVN4EAMpZTgFyVSqei4NsAYVkuZJVdZh2XtGcS8GPs5MQ3mlyVFkusrA0g4m2Jo0NwdTRuoG4lnQe7UB2xnZ9JGlbe4MN2fUGI4m9d1PXk48Jh2gjRvtpSExCJBtXTyHx0fhP3BAcGoIhuNriT_AWx9EO3Vl21OImmPPfeZq9Pdy_3j3mq-fl093tKq95xWPOQHKkQhZCtaCMFAKMaatGSs5gXdVKlg0titJIWQmBiqKCdclYW7frinLBT7OrOXf07mMyIep3N_khndSMFUpQoAoSBTNVexeCN60evd2i_9JA9b5bPXerU7d6363eJ7PZCYkdOuP_kv-TLmepRaex8zbotxdGQaRnlGVBBf8GqRiGMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259401091</pqid></control><display><type>article</type><title>Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mir, R. R ; Kumar, N ; Jaiswal, V ; Girdharwal, N ; Prasad, M ; Balyan, H. S ; Gupta, P. K</creator><creatorcontrib>Mir, R. R ; Kumar, N ; Jaiswal, V ; Girdharwal, N ; Prasad, M ; Balyan, H. S ; Gupta, P. K</creatorcontrib><description>Genetic dissection of grain weight in bread wheat was undertaken through both genome-wide quantitative trait locus (QTL) interval mapping and association mapping. QTL interval mapping involved preparation of a framework linkage map consisting of 294 loci {194 simple sequence repeats (SSRs), 86 amplified fragment length polymorphisms (AFLPs) and 14 selective amplifications of microsatellite polymorphic loci (SAMPL)} using a bi-parental recombinant inbred line (RIL) mapping population derived from Rye Selection111 × Chinese Spring. Using the genotypic data and phenotypic data on grain weight (GW) of RILs collected over six environments, genome-wide single locus QTL analysis was conducted to identify main effect QTL. This led to identification of as many as ten QTL including four major QTL (three QTL were stable), each contributing >20% phenotypic variation (PV) for GW. The above study was supplemented with association mapping, which allowed identification of 11 new markers in the genomic regions that were not reported earlier to harbour any QTL for GW. It also allowed identification of closely linked markers for six known QTL, and validation of eight QTL reported earlier. The QTL identified through QTL interval mapping and association mapping may prove useful in marker-assisted selection (MAS) for the development of cultivars with high GW in bread wheat.</description><identifier>ISSN: 1380-3743</identifier><identifier>EISSN: 1572-9788</identifier><identifier>DOI: 10.1007/s11032-011-9693-4</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Amplification ; amplified fragment length polymorphism ; Biomedical and Life Sciences ; Biotechnology ; Bread ; chromosome mapping ; Cultivars ; Dissection ; Gene mapping ; genetic markers ; Genomes ; Grain ; inbred lines ; Inbreeding ; Life Sciences ; loci ; Mapping ; Marker-assisted selection ; Markers ; microsatellite repeats ; Microsatellites ; Molecular biology ; phenotypic variation ; Phenotypic variations ; Plant biology ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Quantitative trait loci ; Simple sequence repeats ; Weight ; Wheat</subject><ispartof>Molecular breeding, 2012-04, Vol.29 (4), p.963-972</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>Molecular Breeding is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-2173a047549f19e7441eef8d77321b8c976d0556e77844a90a91b622fcfb80343</citedby><cites>FETCH-LOGICAL-c383t-2173a047549f19e7441eef8d77321b8c976d0556e77844a90a91b622fcfb80343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11032-011-9693-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11032-011-9693-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mir, R. R</creatorcontrib><creatorcontrib>Kumar, N</creatorcontrib><creatorcontrib>Jaiswal, V</creatorcontrib><creatorcontrib>Girdharwal, N</creatorcontrib><creatorcontrib>Prasad, M</creatorcontrib><creatorcontrib>Balyan, H. S</creatorcontrib><creatorcontrib>Gupta, P. K</creatorcontrib><title>Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping</title><title>Molecular breeding</title><addtitle>Mol Breeding</addtitle><description>Genetic dissection of grain weight in bread wheat was undertaken through both genome-wide quantitative trait locus (QTL) interval mapping and association mapping. QTL interval mapping involved preparation of a framework linkage map consisting of 294 loci {194 simple sequence repeats (SSRs), 86 amplified fragment length polymorphisms (AFLPs) and 14 selective amplifications of microsatellite polymorphic loci (SAMPL)} using a bi-parental recombinant inbred line (RIL) mapping population derived from Rye Selection111 × Chinese Spring. Using the genotypic data and phenotypic data on grain weight (GW) of RILs collected over six environments, genome-wide single locus QTL analysis was conducted to identify main effect QTL. This led to identification of as many as ten QTL including four major QTL (three QTL were stable), each contributing >20% phenotypic variation (PV) for GW. The above study was supplemented with association mapping, which allowed identification of 11 new markers in the genomic regions that were not reported earlier to harbour any QTL for GW. It also allowed identification of closely linked markers for six known QTL, and validation of eight QTL reported earlier. The QTL identified through QTL interval mapping and association mapping may prove useful in marker-assisted selection (MAS) for the development of cultivars with high GW in bread wheat.</description><subject>Amplification</subject><subject>amplified fragment length polymorphism</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Bread</subject><subject>chromosome mapping</subject><subject>Cultivars</subject><subject>Dissection</subject><subject>Gene mapping</subject><subject>genetic markers</subject><subject>Genomes</subject><subject>Grain</subject><subject>inbred lines</subject><subject>Inbreeding</subject><subject>Life Sciences</subject><subject>loci</subject><subject>Mapping</subject><subject>Marker-assisted selection</subject><subject>Markers</subject><subject>microsatellite repeats</subject><subject>Microsatellites</subject><subject>Molecular biology</subject><subject>phenotypic variation</subject><subject>Phenotypic variations</subject><subject>Plant biology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Quantitative trait loci</subject><subject>Simple sequence repeats</subject><subject>Weight</subject><subject>Wheat</subject><issn>1380-3743</issn><issn>1572-9788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LxDAQhosouH78AE8GPFczSdo0RxFdhQUP6jnMtmkb2W1qkrr4781awZunmcPzvAPvZNkF0GugVN4EAMpZTgFyVSqei4NsAYVkuZJVdZh2XtGcS8GPs5MQ3mlyVFkusrA0g4m2Jo0NwdTRuoG4lnQe7UB2xnZ9JGlbe4MN2fUGI4m9d1PXk48Jh2gjRvtpSExCJBtXTyHx0fhP3BAcGoIhuNriT_AWx9EO3Vl21OImmPPfeZq9Pdy_3j3mq-fl093tKq95xWPOQHKkQhZCtaCMFAKMaatGSs5gXdVKlg0titJIWQmBiqKCdclYW7frinLBT7OrOXf07mMyIep3N_khndSMFUpQoAoSBTNVexeCN60evd2i_9JA9b5bPXerU7d6363eJ7PZCYkdOuP_kv-TLmepRaex8zbotxdGQaRnlGVBBf8GqRiGMQ</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Mir, R. R</creator><creator>Kumar, N</creator><creator>Jaiswal, V</creator><creator>Girdharwal, N</creator><creator>Prasad, M</creator><creator>Balyan, H. S</creator><creator>Gupta, P. K</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20120401</creationdate><title>Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping</title><author>Mir, R. R ; Kumar, N ; Jaiswal, V ; Girdharwal, N ; Prasad, M ; Balyan, H. S ; Gupta, P. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-2173a047549f19e7441eef8d77321b8c976d0556e77844a90a91b622fcfb80343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amplification</topic><topic>amplified fragment length polymorphism</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Bread</topic><topic>chromosome mapping</topic><topic>Cultivars</topic><topic>Dissection</topic><topic>Gene mapping</topic><topic>genetic markers</topic><topic>Genomes</topic><topic>Grain</topic><topic>inbred lines</topic><topic>Inbreeding</topic><topic>Life Sciences</topic><topic>loci</topic><topic>Mapping</topic><topic>Marker-assisted selection</topic><topic>Markers</topic><topic>microsatellite repeats</topic><topic>Microsatellites</topic><topic>Molecular biology</topic><topic>phenotypic variation</topic><topic>Phenotypic variations</topic><topic>Plant biology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Quantitative trait loci</topic><topic>Simple sequence repeats</topic><topic>Weight</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mir, R. R</creatorcontrib><creatorcontrib>Kumar, N</creatorcontrib><creatorcontrib>Jaiswal, V</creatorcontrib><creatorcontrib>Girdharwal, N</creatorcontrib><creatorcontrib>Prasad, M</creatorcontrib><creatorcontrib>Balyan, H. S</creatorcontrib><creatorcontrib>Gupta, P. K</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Molecular breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mir, R. R</au><au>Kumar, N</au><au>Jaiswal, V</au><au>Girdharwal, N</au><au>Prasad, M</au><au>Balyan, H. S</au><au>Gupta, P. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping</atitle><jtitle>Molecular breeding</jtitle><stitle>Mol Breeding</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>29</volume><issue>4</issue><spage>963</spage><epage>972</epage><pages>963-972</pages><issn>1380-3743</issn><eissn>1572-9788</eissn><abstract>Genetic dissection of grain weight in bread wheat was undertaken through both genome-wide quantitative trait locus (QTL) interval mapping and association mapping. QTL interval mapping involved preparation of a framework linkage map consisting of 294 loci {194 simple sequence repeats (SSRs), 86 amplified fragment length polymorphisms (AFLPs) and 14 selective amplifications of microsatellite polymorphic loci (SAMPL)} using a bi-parental recombinant inbred line (RIL) mapping population derived from Rye Selection111 × Chinese Spring. Using the genotypic data and phenotypic data on grain weight (GW) of RILs collected over six environments, genome-wide single locus QTL analysis was conducted to identify main effect QTL. This led to identification of as many as ten QTL including four major QTL (three QTL were stable), each contributing >20% phenotypic variation (PV) for GW. The above study was supplemented with association mapping, which allowed identification of 11 new markers in the genomic regions that were not reported earlier to harbour any QTL for GW. It also allowed identification of closely linked markers for six known QTL, and validation of eight QTL reported earlier. The QTL identified through QTL interval mapping and association mapping may prove useful in marker-assisted selection (MAS) for the development of cultivars with high GW in bread wheat.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s11032-011-9693-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-3743 |
ispartof | Molecular breeding, 2012-04, Vol.29 (4), p.963-972 |
issn | 1380-3743 1572-9788 |
language | eng |
recordid | cdi_proquest_journals_2259401091 |
source | SpringerLink Journals - AutoHoldings |
subjects | Amplification amplified fragment length polymorphism Biomedical and Life Sciences Biotechnology Bread chromosome mapping Cultivars Dissection Gene mapping genetic markers Genomes Grain inbred lines Inbreeding Life Sciences loci Mapping Marker-assisted selection Markers microsatellite repeats Microsatellites Molecular biology phenotypic variation Phenotypic variations Plant biology Plant Genetics and Genomics Plant Pathology Plant Physiology Plant Sciences Quantitative trait loci Simple sequence repeats Weight Wheat |
title | Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20dissection%20of%20grain%20weight%20in%20bread%20wheat%20through%20quantitative%20trait%20locus%20interval%20and%20association%20mapping&rft.jtitle=Molecular%20breeding&rft.au=Mir,%20R.%20R&rft.date=2012-04-01&rft.volume=29&rft.issue=4&rft.spage=963&rft.epage=972&rft.pages=963-972&rft.issn=1380-3743&rft.eissn=1572-9788&rft_id=info:doi/10.1007/s11032-011-9693-4&rft_dat=%3Cproquest_cross%3E2259401091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259401091&rft_id=info:pmid/&rfr_iscdi=true |