Fingering instability in water-oil displacement
Following the classical Buckley–Leverett theory for the two-phase immiscible flows in porous media a non-linear evolution equation for the water-oil displacement front is formulated and studied numerically. The numerical simulations yield a physically plausible picture of the fingering instability k...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2006-06, Vol.63 (3), p.363-380 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 380 |
---|---|
container_issue | 3 |
container_start_page | 363 |
container_title | Transport in porous media |
container_volume | 63 |
creator | BRAILOVSKY, I BABCHIN, A FRANKEL, M SIVASHINSKY, G |
description | Following the classical Buckley–Leverett theory for the two-phase immiscible flows in porous media a non-linear evolution equation for the water-oil displacement front is formulated and studied numerically. The numerical simulations yield a physically plausible picture of the fingering instability known to develop in water-oil systems. A way to control the unrestricted growth of fingers is discussed. Distinctions and similarities with dynamically related Saffman–Taylor and Darrieus–Landau problems are outlined. |
doi_str_mv | 10.1007/s11242-005-8430-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259338862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259338862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-b12bb5d2e8231302f4c63b7a810addb4f4f6fd32598968972500e5d40206af6b3</originalsourceid><addsrcrecordid>eNpFkMFKAzEQhoMoWKsP4G1BPMZOMtls9ijFqlDwoueQ7CaSst2tyRZpn96ULXiZmcP__QMfIfcMnhhAtUiMccEpQEmVQKDHCzJjZYWUSRSXZAZM1hRrhtfkJqUNQKaUmJHFKvTfLuZRhD6NxoYujId8F79mdJEOoSvakHadadzW9eMtufKmS-7uvOfka_XyuXyj64_X9-XzmjYIOFLLuLVly53iyBC4F41EWxnFwLStFV546VvkZa1qqeqKlwCubAVwkMZLi3PyMPXu4vCzd2nUm2Ef-_xS80whKiV5TrEp1cQhpei83sWwNfGgGeiTFz150dmLPnnRx8w8nptNakzno-mbkP7BquLIa8A_weFhZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259338862</pqid></control><display><type>article</type><title>Fingering instability in water-oil displacement</title><source>SpringerLink</source><creator>BRAILOVSKY, I ; BABCHIN, A ; FRANKEL, M ; SIVASHINSKY, G</creator><creatorcontrib>BRAILOVSKY, I ; BABCHIN, A ; FRANKEL, M ; SIVASHINSKY, G</creatorcontrib><description>Following the classical Buckley–Leverett theory for the two-phase immiscible flows in porous media a non-linear evolution equation for the water-oil displacement front is formulated and studied numerically. The numerical simulations yield a physically plausible picture of the fingering instability known to develop in water-oil systems. A way to control the unrestricted growth of fingers is discussed. Distinctions and similarities with dynamically related Saffman–Taylor and Darrieus–Landau problems are outlined.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-005-8430-z</identifier><identifier>CODEN: TPMEEI</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Computer simulation ; Control stability ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Hydrocarbons ; Hydrogeology ; Hydrology. Hydrogeology ; Linear evolution equations ; Nonlinear evolution equations ; Pollution, environment geology ; Porous media ; Sedimentary rocks ; Two phase flow</subject><ispartof>Transport in porous media, 2006-06, Vol.63 (3), p.363-380</ispartof><rights>2006 INIST-CNRS</rights><rights>Transport in Porous Media is a copyright of Springer, (2006). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-b12bb5d2e8231302f4c63b7a810addb4f4f6fd32598968972500e5d40206af6b3</citedby><cites>FETCH-LOGICAL-c303t-b12bb5d2e8231302f4c63b7a810addb4f4f6fd32598968972500e5d40206af6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17723290$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BRAILOVSKY, I</creatorcontrib><creatorcontrib>BABCHIN, A</creatorcontrib><creatorcontrib>FRANKEL, M</creatorcontrib><creatorcontrib>SIVASHINSKY, G</creatorcontrib><title>Fingering instability in water-oil displacement</title><title>Transport in porous media</title><description>Following the classical Buckley–Leverett theory for the two-phase immiscible flows in porous media a non-linear evolution equation for the water-oil displacement front is formulated and studied numerically. The numerical simulations yield a physically plausible picture of the fingering instability known to develop in water-oil systems. A way to control the unrestricted growth of fingers is discussed. Distinctions and similarities with dynamically related Saffman–Taylor and Darrieus–Landau problems are outlined.</description><subject>Computer simulation</subject><subject>Control stability</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Hydrocarbons</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Linear evolution equations</subject><subject>Nonlinear evolution equations</subject><subject>Pollution, environment geology</subject><subject>Porous media</subject><subject>Sedimentary rocks</subject><subject>Two phase flow</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkMFKAzEQhoMoWKsP4G1BPMZOMtls9ijFqlDwoueQ7CaSst2tyRZpn96ULXiZmcP__QMfIfcMnhhAtUiMccEpQEmVQKDHCzJjZYWUSRSXZAZM1hRrhtfkJqUNQKaUmJHFKvTfLuZRhD6NxoYujId8F79mdJEOoSvakHadadzW9eMtufKmS-7uvOfka_XyuXyj64_X9-XzmjYIOFLLuLVly53iyBC4F41EWxnFwLStFV546VvkZa1qqeqKlwCubAVwkMZLi3PyMPXu4vCzd2nUm2Ef-_xS80whKiV5TrEp1cQhpei83sWwNfGgGeiTFz150dmLPnnRx8w8nptNakzno-mbkP7BquLIa8A_weFhZw</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>BRAILOVSKY, I</creator><creator>BABCHIN, A</creator><creator>FRANKEL, M</creator><creator>SIVASHINSKY, G</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20060601</creationdate><title>Fingering instability in water-oil displacement</title><author>BRAILOVSKY, I ; BABCHIN, A ; FRANKEL, M ; SIVASHINSKY, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-b12bb5d2e8231302f4c63b7a810addb4f4f6fd32598968972500e5d40206af6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computer simulation</topic><topic>Control stability</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Hydrocarbons</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Linear evolution equations</topic><topic>Nonlinear evolution equations</topic><topic>Pollution, environment geology</topic><topic>Porous media</topic><topic>Sedimentary rocks</topic><topic>Two phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BRAILOVSKY, I</creatorcontrib><creatorcontrib>BABCHIN, A</creatorcontrib><creatorcontrib>FRANKEL, M</creatorcontrib><creatorcontrib>SIVASHINSKY, G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BRAILOVSKY, I</au><au>BABCHIN, A</au><au>FRANKEL, M</au><au>SIVASHINSKY, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fingering instability in water-oil displacement</atitle><jtitle>Transport in porous media</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>63</volume><issue>3</issue><spage>363</spage><epage>380</epage><pages>363-380</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><coden>TPMEEI</coden><abstract>Following the classical Buckley–Leverett theory for the two-phase immiscible flows in porous media a non-linear evolution equation for the water-oil displacement front is formulated and studied numerically. The numerical simulations yield a physically plausible picture of the fingering instability known to develop in water-oil systems. A way to control the unrestricted growth of fingers is discussed. Distinctions and similarities with dynamically related Saffman–Taylor and Darrieus–Landau problems are outlined.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11242-005-8430-z</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2006-06, Vol.63 (3), p.363-380 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_proquest_journals_2259338862 |
source | SpringerLink |
subjects | Computer simulation Control stability Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology Hydrocarbons Hydrogeology Hydrology. Hydrogeology Linear evolution equations Nonlinear evolution equations Pollution, environment geology Porous media Sedimentary rocks Two phase flow |
title | Fingering instability in water-oil displacement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fingering%20instability%20in%20water-oil%20displacement&rft.jtitle=Transport%20in%20porous%20media&rft.au=BRAILOVSKY,%20I&rft.date=2006-06-01&rft.volume=63&rft.issue=3&rft.spage=363&rft.epage=380&rft.pages=363-380&rft.issn=0169-3913&rft.eissn=1573-1634&rft.coden=TPMEEI&rft_id=info:doi/10.1007/s11242-005-8430-z&rft_dat=%3Cproquest_cross%3E2259338862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259338862&rft_id=info:pmid/&rfr_iscdi=true |