Fingering instability in water-oil displacement

Following the classical Buckley–Leverett theory for the two-phase immiscible flows in porous media a non-linear evolution equation for the water-oil displacement front is formulated and studied numerically. The numerical simulations yield a physically plausible picture of the fingering instability k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2006-06, Vol.63 (3), p.363-380
Hauptverfasser: BRAILOVSKY, I, BABCHIN, A, FRANKEL, M, SIVASHINSKY, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 3
container_start_page 363
container_title Transport in porous media
container_volume 63
creator BRAILOVSKY, I
BABCHIN, A
FRANKEL, M
SIVASHINSKY, G
description Following the classical Buckley–Leverett theory for the two-phase immiscible flows in porous media a non-linear evolution equation for the water-oil displacement front is formulated and studied numerically. The numerical simulations yield a physically plausible picture of the fingering instability known to develop in water-oil systems. A way to control the unrestricted growth of fingers is discussed. Distinctions and similarities with dynamically related Saffman–Taylor and Darrieus–Landau problems are outlined.
doi_str_mv 10.1007/s11242-005-8430-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259338862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259338862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-b12bb5d2e8231302f4c63b7a810addb4f4f6fd32598968972500e5d40206af6b3</originalsourceid><addsrcrecordid>eNpFkMFKAzEQhoMoWKsP4G1BPMZOMtls9ijFqlDwoueQ7CaSst2tyRZpn96ULXiZmcP__QMfIfcMnhhAtUiMccEpQEmVQKDHCzJjZYWUSRSXZAZM1hRrhtfkJqUNQKaUmJHFKvTfLuZRhD6NxoYujId8F79mdJEOoSvakHadadzW9eMtufKmS-7uvOfka_XyuXyj64_X9-XzmjYIOFLLuLVly53iyBC4F41EWxnFwLStFV546VvkZa1qqeqKlwCubAVwkMZLi3PyMPXu4vCzd2nUm2Ef-_xS80whKiV5TrEp1cQhpei83sWwNfGgGeiTFz150dmLPnnRx8w8nptNakzno-mbkP7BquLIa8A_weFhZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259338862</pqid></control><display><type>article</type><title>Fingering instability in water-oil displacement</title><source>SpringerLink</source><creator>BRAILOVSKY, I ; BABCHIN, A ; FRANKEL, M ; SIVASHINSKY, G</creator><creatorcontrib>BRAILOVSKY, I ; BABCHIN, A ; FRANKEL, M ; SIVASHINSKY, G</creatorcontrib><description>Following the classical Buckley–Leverett theory for the two-phase immiscible flows in porous media a non-linear evolution equation for the water-oil displacement front is formulated and studied numerically. The numerical simulations yield a physically plausible picture of the fingering instability known to develop in water-oil systems. A way to control the unrestricted growth of fingers is discussed. Distinctions and similarities with dynamically related Saffman–Taylor and Darrieus–Landau problems are outlined.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-005-8430-z</identifier><identifier>CODEN: TPMEEI</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Computer simulation ; Control stability ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Hydrocarbons ; Hydrogeology ; Hydrology. Hydrogeology ; Linear evolution equations ; Nonlinear evolution equations ; Pollution, environment geology ; Porous media ; Sedimentary rocks ; Two phase flow</subject><ispartof>Transport in porous media, 2006-06, Vol.63 (3), p.363-380</ispartof><rights>2006 INIST-CNRS</rights><rights>Transport in Porous Media is a copyright of Springer, (2006). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-b12bb5d2e8231302f4c63b7a810addb4f4f6fd32598968972500e5d40206af6b3</citedby><cites>FETCH-LOGICAL-c303t-b12bb5d2e8231302f4c63b7a810addb4f4f6fd32598968972500e5d40206af6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17723290$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BRAILOVSKY, I</creatorcontrib><creatorcontrib>BABCHIN, A</creatorcontrib><creatorcontrib>FRANKEL, M</creatorcontrib><creatorcontrib>SIVASHINSKY, G</creatorcontrib><title>Fingering instability in water-oil displacement</title><title>Transport in porous media</title><description>Following the classical Buckley–Leverett theory for the two-phase immiscible flows in porous media a non-linear evolution equation for the water-oil displacement front is formulated and studied numerically. The numerical simulations yield a physically plausible picture of the fingering instability known to develop in water-oil systems. A way to control the unrestricted growth of fingers is discussed. Distinctions and similarities with dynamically related Saffman–Taylor and Darrieus–Landau problems are outlined.</description><subject>Computer simulation</subject><subject>Control stability</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Hydrocarbons</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Linear evolution equations</subject><subject>Nonlinear evolution equations</subject><subject>Pollution, environment geology</subject><subject>Porous media</subject><subject>Sedimentary rocks</subject><subject>Two phase flow</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkMFKAzEQhoMoWKsP4G1BPMZOMtls9ijFqlDwoueQ7CaSst2tyRZpn96ULXiZmcP__QMfIfcMnhhAtUiMccEpQEmVQKDHCzJjZYWUSRSXZAZM1hRrhtfkJqUNQKaUmJHFKvTfLuZRhD6NxoYujId8F79mdJEOoSvakHadadzW9eMtufKmS-7uvOfka_XyuXyj64_X9-XzmjYIOFLLuLVly53iyBC4F41EWxnFwLStFV546VvkZa1qqeqKlwCubAVwkMZLi3PyMPXu4vCzd2nUm2Ef-_xS80whKiV5TrEp1cQhpei83sWwNfGgGeiTFz150dmLPnnRx8w8nptNakzno-mbkP7BquLIa8A_weFhZw</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>BRAILOVSKY, I</creator><creator>BABCHIN, A</creator><creator>FRANKEL, M</creator><creator>SIVASHINSKY, G</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20060601</creationdate><title>Fingering instability in water-oil displacement</title><author>BRAILOVSKY, I ; BABCHIN, A ; FRANKEL, M ; SIVASHINSKY, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-b12bb5d2e8231302f4c63b7a810addb4f4f6fd32598968972500e5d40206af6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computer simulation</topic><topic>Control stability</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Hydrocarbons</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Linear evolution equations</topic><topic>Nonlinear evolution equations</topic><topic>Pollution, environment geology</topic><topic>Porous media</topic><topic>Sedimentary rocks</topic><topic>Two phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BRAILOVSKY, I</creatorcontrib><creatorcontrib>BABCHIN, A</creatorcontrib><creatorcontrib>FRANKEL, M</creatorcontrib><creatorcontrib>SIVASHINSKY, G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BRAILOVSKY, I</au><au>BABCHIN, A</au><au>FRANKEL, M</au><au>SIVASHINSKY, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fingering instability in water-oil displacement</atitle><jtitle>Transport in porous media</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>63</volume><issue>3</issue><spage>363</spage><epage>380</epage><pages>363-380</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><coden>TPMEEI</coden><abstract>Following the classical Buckley–Leverett theory for the two-phase immiscible flows in porous media a non-linear evolution equation for the water-oil displacement front is formulated and studied numerically. The numerical simulations yield a physically plausible picture of the fingering instability known to develop in water-oil systems. A way to control the unrestricted growth of fingers is discussed. Distinctions and similarities with dynamically related Saffman–Taylor and Darrieus–Landau problems are outlined.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11242-005-8430-z</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2006-06, Vol.63 (3), p.363-380
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2259338862
source SpringerLink
subjects Computer simulation
Control stability
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Hydrocarbons
Hydrogeology
Hydrology. Hydrogeology
Linear evolution equations
Nonlinear evolution equations
Pollution, environment geology
Porous media
Sedimentary rocks
Two phase flow
title Fingering instability in water-oil displacement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fingering%20instability%20in%20water-oil%20displacement&rft.jtitle=Transport%20in%20porous%20media&rft.au=BRAILOVSKY,%20I&rft.date=2006-06-01&rft.volume=63&rft.issue=3&rft.spage=363&rft.epage=380&rft.pages=363-380&rft.issn=0169-3913&rft.eissn=1573-1634&rft.coden=TPMEEI&rft_id=info:doi/10.1007/s11242-005-8430-z&rft_dat=%3Cproquest_cross%3E2259338862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259338862&rft_id=info:pmid/&rfr_iscdi=true