Derivation of the Forchheimer law via homogenization

In this paper we derive the Forchheimer law via the theory of homogenization. In particular, we study the nonlinear correction to Darcy's law due to inertial effects on the flow of a Newtonian fluid in rigid porous media. A general formula for this correction term is derived directly from the N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2001-08, Vol.44 (2), p.325-335
Hauptverfasser: ZHANGXIN CHEN, LYONS, Stephen L, GUAN QIN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue 2
container_start_page 325
container_title Transport in porous media
container_volume 44
creator ZHANGXIN CHEN
LYONS, Stephen L
GUAN QIN
description In this paper we derive the Forchheimer law via the theory of homogenization. In particular, we study the nonlinear correction to Darcy's law due to inertial effects on the flow of a Newtonian fluid in rigid porous media. A general formula for this correction term is derived directly from the Navier–Stokes equation via homogenization. Unlike other studies based on the same approach that concluded for the nonlinear correction to be cubic in velocity for isotropic media, the present work shows that the nonlinear correction is quadratic. An example is constructed to illustrate our theory. In this example, the analytic solution to the Navier–Stokes equation is obtained and is utilized to show the validity of the quadratic correction. Both incompressible and compressible fluids are considered.
doi_str_mv 10.1023/A:1010749114251
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_2259336138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259336138</sourcerecordid><originalsourceid>FETCH-LOGICAL-a326t-fc9758350617f769c87306468dd3f12729d5561a0db05b02370be69a4bf689753</originalsourceid><addsrcrecordid>eNotz71PwzAQBXALgUQpzKyREGPA5_MnW1VaQKrEAnPkJDZxlcTFSYvgryeCTrf83ns6Qq6B3gFleL94AApUcQPAmYATMgOhMAeJ_JTMKEiTowE8JxfDsKUTpZrPCH90KRzsGGKfRZ-NjcvWMVVN40LnUtbar-wQbNbELn64Pvz8yUty5m07uKvjnZP39ept-ZxvXp9elotNbpHJMfeVUUKjoBKUV9JUWiGVXOq6Rg9MMVMLIcHSuqSinH5QtHTSWF56qacozsnNf-8uxc-9G8ZiG_epnyYLxoRBlIB6UrdHZYfKtj7ZvgpDsUuhs-m7AE416kn_AhJDUgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259336138</pqid></control><display><type>article</type><title>Derivation of the Forchheimer law via homogenization</title><source>SpringerLink Journals - AutoHoldings</source><creator>ZHANGXIN CHEN ; LYONS, Stephen L ; GUAN QIN</creator><creatorcontrib>ZHANGXIN CHEN ; LYONS, Stephen L ; GUAN QIN</creatorcontrib><description>In this paper we derive the Forchheimer law via the theory of homogenization. In particular, we study the nonlinear correction to Darcy's law due to inertial effects on the flow of a Newtonian fluid in rigid porous media. A general formula for this correction term is derived directly from the Navier–Stokes equation via homogenization. Unlike other studies based on the same approach that concluded for the nonlinear correction to be cubic in velocity for isotropic media, the present work shows that the nonlinear correction is quadratic. An example is constructed to illustrate our theory. In this example, the analytic solution to the Navier–Stokes equation is obtained and is utilized to show the validity of the quadratic correction. Both incompressible and compressible fluids are considered.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1023/A:1010749114251</identifier><identifier>CODEN: TPMEEI</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Compressible fluids ; Computational fluid dynamics ; Darcys law ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Exact solutions ; Fluid flow ; Homogenization ; Hydrogeology ; Hydrology. Hydrogeology ; Incompressible flow ; Isotropic media ; Navier-Stokes equations ; Newtonian fluids ; Porous media</subject><ispartof>Transport in porous media, 2001-08, Vol.44 (2), p.325-335</ispartof><rights>2002 INIST-CNRS</rights><rights>Transport in Porous Media is a copyright of Springer, (2001). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a326t-fc9758350617f769c87306468dd3f12729d5561a0db05b02370be69a4bf689753</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14083859$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ZHANGXIN CHEN</creatorcontrib><creatorcontrib>LYONS, Stephen L</creatorcontrib><creatorcontrib>GUAN QIN</creatorcontrib><title>Derivation of the Forchheimer law via homogenization</title><title>Transport in porous media</title><description>In this paper we derive the Forchheimer law via the theory of homogenization. In particular, we study the nonlinear correction to Darcy's law due to inertial effects on the flow of a Newtonian fluid in rigid porous media. A general formula for this correction term is derived directly from the Navier–Stokes equation via homogenization. Unlike other studies based on the same approach that concluded for the nonlinear correction to be cubic in velocity for isotropic media, the present work shows that the nonlinear correction is quadratic. An example is constructed to illustrate our theory. In this example, the analytic solution to the Navier–Stokes equation is obtained and is utilized to show the validity of the quadratic correction. Both incompressible and compressible fluids are considered.</description><subject>Compressible fluids</subject><subject>Computational fluid dynamics</subject><subject>Darcys law</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Homogenization</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Incompressible flow</subject><subject>Isotropic media</subject><subject>Navier-Stokes equations</subject><subject>Newtonian fluids</subject><subject>Porous media</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotz71PwzAQBXALgUQpzKyREGPA5_MnW1VaQKrEAnPkJDZxlcTFSYvgryeCTrf83ns6Qq6B3gFleL94AApUcQPAmYATMgOhMAeJ_JTMKEiTowE8JxfDsKUTpZrPCH90KRzsGGKfRZ-NjcvWMVVN40LnUtbar-wQbNbELn64Pvz8yUty5m07uKvjnZP39ept-ZxvXp9elotNbpHJMfeVUUKjoBKUV9JUWiGVXOq6Rg9MMVMLIcHSuqSinH5QtHTSWF56qacozsnNf-8uxc-9G8ZiG_epnyYLxoRBlIB6UrdHZYfKtj7ZvgpDsUuhs-m7AE416kn_AhJDUgI</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>ZHANGXIN CHEN</creator><creator>LYONS, Stephen L</creator><creator>GUAN QIN</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20010801</creationdate><title>Derivation of the Forchheimer law via homogenization</title><author>ZHANGXIN CHEN ; LYONS, Stephen L ; GUAN QIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a326t-fc9758350617f769c87306468dd3f12729d5561a0db05b02370be69a4bf689753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Compressible fluids</topic><topic>Computational fluid dynamics</topic><topic>Darcys law</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Homogenization</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Incompressible flow</topic><topic>Isotropic media</topic><topic>Navier-Stokes equations</topic><topic>Newtonian fluids</topic><topic>Porous media</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANGXIN CHEN</creatorcontrib><creatorcontrib>LYONS, Stephen L</creatorcontrib><creatorcontrib>GUAN QIN</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANGXIN CHEN</au><au>LYONS, Stephen L</au><au>GUAN QIN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of the Forchheimer law via homogenization</atitle><jtitle>Transport in porous media</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>44</volume><issue>2</issue><spage>325</spage><epage>335</epage><pages>325-335</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><coden>TPMEEI</coden><abstract>In this paper we derive the Forchheimer law via the theory of homogenization. In particular, we study the nonlinear correction to Darcy's law due to inertial effects on the flow of a Newtonian fluid in rigid porous media. A general formula for this correction term is derived directly from the Navier–Stokes equation via homogenization. Unlike other studies based on the same approach that concluded for the nonlinear correction to be cubic in velocity for isotropic media, the present work shows that the nonlinear correction is quadratic. An example is constructed to illustrate our theory. In this example, the analytic solution to the Navier–Stokes equation is obtained and is utilized to show the validity of the quadratic correction. Both incompressible and compressible fluids are considered.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/A:1010749114251</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2001-08, Vol.44 (2), p.325-335
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2259336138
source SpringerLink Journals - AutoHoldings
subjects Compressible fluids
Computational fluid dynamics
Darcys law
Earth sciences
Earth, ocean, space
Exact sciences and technology
Exact solutions
Fluid flow
Homogenization
Hydrogeology
Hydrology. Hydrogeology
Incompressible flow
Isotropic media
Navier-Stokes equations
Newtonian fluids
Porous media
title Derivation of the Forchheimer law via homogenization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20the%20Forchheimer%20law%20via%20homogenization&rft.jtitle=Transport%20in%20porous%20media&rft.au=ZHANGXIN%20CHEN&rft.date=2001-08-01&rft.volume=44&rft.issue=2&rft.spage=325&rft.epage=335&rft.pages=325-335&rft.issn=0169-3913&rft.eissn=1573-1634&rft.coden=TPMEEI&rft_id=info:doi/10.1023/A:1010749114251&rft_dat=%3Cproquest_pasca%3E2259336138%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259336138&rft_id=info:pmid/&rfr_iscdi=true