Combined BDS, Galileo, QZSS and GPS single-frequency RTK

We will focus on single-frequency single-baseline real-time kinematic (RTK) combining four Code Division Multiple Access (CDMA) satellite systems. We will combine observations from the Chinese BeiDou Navigation Satellite System (BDS), European Galileo, American Global Positioning System (GPS) and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GPS solutions 2015-01, Vol.19 (1), p.151-163
Hauptverfasser: Odolinski, Robert, Teunissen, Peter J. G., Odijk, Dennis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue 1
container_start_page 151
container_title GPS solutions
container_volume 19
creator Odolinski, Robert
Teunissen, Peter J. G.
Odijk, Dennis
description We will focus on single-frequency single-baseline real-time kinematic (RTK) combining four Code Division Multiple Access (CDMA) satellite systems. We will combine observations from the Chinese BeiDou Navigation Satellite System (BDS), European Galileo, American Global Positioning System (GPS) and the Japanese Quasi-Zenith Satellite System (QZSS). To further strengthen the underlying model, attention will be given to overlapping frequencies between the systems. If one can calibrate the inter-system biases, a common pivot satellite between the respective systems can be used to parameterize double-differenced ambiguities. The LAMBDA method is used for ambiguity resolution. The instantaneous (single-epoch) single-frequency RTK performance is evaluated by a formal as well as an empirical analysis, consisting of ambiguity dilution of precision (ADOP), bootstrapped and integer least-squares success rates and positioning precisions. The time-to-correct-fix in some particular cases when instantaneous RTK is not possible will also be analyzed. To simulate conditions with obstructed satellite visibility or when low-elevation multipath is present, various elevation cut-off angles between 10 and 40° will be used. Four days of real data are collected in Perth, Western Australia. It will be shown that the four-system RTK model allows for improved integer ambiguity resolution and positioning performance over the single-, dual- or triple-systems, particularly for higher cut-off angles.
doi_str_mv 10.1007/s10291-014-0376-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259287966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259287966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-82cf8cbf5c45d5e406f1556f7c65f5a2aa76d3d9715124f44bbc3aea594a08a03</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqXwA9gisdZw7fg5QoGCqMQjZWGxHMeuUqVJsduh_55UQWJiunc43znSh9AlgWsCIG8SAaoJBsIw5FJgcYRGhFOCiVLiuP9BAea5hFN0ltIKgILWbITUtFuXdeur7O6-mGQz29SN7ybZ-1dRZLatstlbkaW6XTYeh-i_d751--xj8XKOToJtkr_4vWP0-fiwmD7h-evseXo7xy5neosVdUG5MnDHeMU9AxEI5yJIJ3jgllorRZVXWhJOKAuMlaXLrbdcMwvKQj5GV0PvJnb9etqaVbeLbT9pKOWaKqmF6FNkSLnYpRR9MJtYr23cGwLmIMgMgkwvyBwEmQNDByb12Xbp41_z_9APdEllbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259287966</pqid></control><display><type>article</type><title>Combined BDS, Galileo, QZSS and GPS single-frequency RTK</title><source>Springer Nature - Complete Springer Journals</source><creator>Odolinski, Robert ; Teunissen, Peter J. G. ; Odijk, Dennis</creator><creatorcontrib>Odolinski, Robert ; Teunissen, Peter J. G. ; Odijk, Dennis</creatorcontrib><description>We will focus on single-frequency single-baseline real-time kinematic (RTK) combining four Code Division Multiple Access (CDMA) satellite systems. We will combine observations from the Chinese BeiDou Navigation Satellite System (BDS), European Galileo, American Global Positioning System (GPS) and the Japanese Quasi-Zenith Satellite System (QZSS). To further strengthen the underlying model, attention will be given to overlapping frequencies between the systems. If one can calibrate the inter-system biases, a common pivot satellite between the respective systems can be used to parameterize double-differenced ambiguities. The LAMBDA method is used for ambiguity resolution. The instantaneous (single-epoch) single-frequency RTK performance is evaluated by a formal as well as an empirical analysis, consisting of ambiguity dilution of precision (ADOP), bootstrapped and integer least-squares success rates and positioning precisions. The time-to-correct-fix in some particular cases when instantaneous RTK is not possible will also be analyzed. To simulate conditions with obstructed satellite visibility or when low-elevation multipath is present, various elevation cut-off angles between 10 and 40° will be used. Four days of real data are collected in Perth, Western Australia. It will be shown that the four-system RTK model allows for improved integer ambiguity resolution and positioning performance over the single-, dual- or triple-systems, particularly for higher cut-off angles.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-014-0376-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ambiguity resolution (mathematics) ; Atmospheric Sciences ; Automotive Engineering ; BeiDou Navigation Satellite System ; Code Division Multiple Access ; Computer simulation ; Dilution ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Empirical analysis ; Galileo satellite system (Europe) ; Geophysics/Geodesy ; Global positioning systems ; GPS ; Integers ; Navigation satellites ; Original Article ; Performance evaluation ; Satellite navigation systems ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Visibility</subject><ispartof>GPS solutions, 2015-01, Vol.19 (1), p.151-163</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>GPS Solutions is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-82cf8cbf5c45d5e406f1556f7c65f5a2aa76d3d9715124f44bbc3aea594a08a03</citedby><cites>FETCH-LOGICAL-c349t-82cf8cbf5c45d5e406f1556f7c65f5a2aa76d3d9715124f44bbc3aea594a08a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-014-0376-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-014-0376-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Odolinski, Robert</creatorcontrib><creatorcontrib>Teunissen, Peter J. G.</creatorcontrib><creatorcontrib>Odijk, Dennis</creatorcontrib><title>Combined BDS, Galileo, QZSS and GPS single-frequency RTK</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>We will focus on single-frequency single-baseline real-time kinematic (RTK) combining four Code Division Multiple Access (CDMA) satellite systems. We will combine observations from the Chinese BeiDou Navigation Satellite System (BDS), European Galileo, American Global Positioning System (GPS) and the Japanese Quasi-Zenith Satellite System (QZSS). To further strengthen the underlying model, attention will be given to overlapping frequencies between the systems. If one can calibrate the inter-system biases, a common pivot satellite between the respective systems can be used to parameterize double-differenced ambiguities. The LAMBDA method is used for ambiguity resolution. The instantaneous (single-epoch) single-frequency RTK performance is evaluated by a formal as well as an empirical analysis, consisting of ambiguity dilution of precision (ADOP), bootstrapped and integer least-squares success rates and positioning precisions. The time-to-correct-fix in some particular cases when instantaneous RTK is not possible will also be analyzed. To simulate conditions with obstructed satellite visibility or when low-elevation multipath is present, various elevation cut-off angles between 10 and 40° will be used. Four days of real data are collected in Perth, Western Australia. It will be shown that the four-system RTK model allows for improved integer ambiguity resolution and positioning performance over the single-, dual- or triple-systems, particularly for higher cut-off angles.</description><subject>Ambiguity resolution (mathematics)</subject><subject>Atmospheric Sciences</subject><subject>Automotive Engineering</subject><subject>BeiDou Navigation Satellite System</subject><subject>Code Division Multiple Access</subject><subject>Computer simulation</subject><subject>Dilution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Empirical analysis</subject><subject>Galileo satellite system (Europe)</subject><subject>Geophysics/Geodesy</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Integers</subject><subject>Navigation satellites</subject><subject>Original Article</subject><subject>Performance evaluation</subject><subject>Satellite navigation systems</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Visibility</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDtPwzAUhS0EEqXwA9gisdZw7fg5QoGCqMQjZWGxHMeuUqVJsduh_55UQWJiunc43znSh9AlgWsCIG8SAaoJBsIw5FJgcYRGhFOCiVLiuP9BAea5hFN0ltIKgILWbITUtFuXdeur7O6-mGQz29SN7ybZ-1dRZLatstlbkaW6XTYeh-i_d751--xj8XKOToJtkr_4vWP0-fiwmD7h-evseXo7xy5neosVdUG5MnDHeMU9AxEI5yJIJ3jgllorRZVXWhJOKAuMlaXLrbdcMwvKQj5GV0PvJnb9etqaVbeLbT9pKOWaKqmF6FNkSLnYpRR9MJtYr23cGwLmIMgMgkwvyBwEmQNDByb12Xbp41_z_9APdEllbw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Odolinski, Robert</creator><creator>Teunissen, Peter J. G.</creator><creator>Odijk, Dennis</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20150101</creationdate><title>Combined BDS, Galileo, QZSS and GPS single-frequency RTK</title><author>Odolinski, Robert ; Teunissen, Peter J. G. ; Odijk, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-82cf8cbf5c45d5e406f1556f7c65f5a2aa76d3d9715124f44bbc3aea594a08a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ambiguity resolution (mathematics)</topic><topic>Atmospheric Sciences</topic><topic>Automotive Engineering</topic><topic>BeiDou Navigation Satellite System</topic><topic>Code Division Multiple Access</topic><topic>Computer simulation</topic><topic>Dilution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Empirical analysis</topic><topic>Galileo satellite system (Europe)</topic><topic>Geophysics/Geodesy</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Integers</topic><topic>Navigation satellites</topic><topic>Original Article</topic><topic>Performance evaluation</topic><topic>Satellite navigation systems</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odolinski, Robert</creatorcontrib><creatorcontrib>Teunissen, Peter J. G.</creatorcontrib><creatorcontrib>Odijk, Dennis</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odolinski, Robert</au><au>Teunissen, Peter J. G.</au><au>Odijk, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined BDS, Galileo, QZSS and GPS single-frequency RTK</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>19</volume><issue>1</issue><spage>151</spage><epage>163</epage><pages>151-163</pages><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>We will focus on single-frequency single-baseline real-time kinematic (RTK) combining four Code Division Multiple Access (CDMA) satellite systems. We will combine observations from the Chinese BeiDou Navigation Satellite System (BDS), European Galileo, American Global Positioning System (GPS) and the Japanese Quasi-Zenith Satellite System (QZSS). To further strengthen the underlying model, attention will be given to overlapping frequencies between the systems. If one can calibrate the inter-system biases, a common pivot satellite between the respective systems can be used to parameterize double-differenced ambiguities. The LAMBDA method is used for ambiguity resolution. The instantaneous (single-epoch) single-frequency RTK performance is evaluated by a formal as well as an empirical analysis, consisting of ambiguity dilution of precision (ADOP), bootstrapped and integer least-squares success rates and positioning precisions. The time-to-correct-fix in some particular cases when instantaneous RTK is not possible will also be analyzed. To simulate conditions with obstructed satellite visibility or when low-elevation multipath is present, various elevation cut-off angles between 10 and 40° will be used. Four days of real data are collected in Perth, Western Australia. It will be shown that the four-system RTK model allows for improved integer ambiguity resolution and positioning performance over the single-, dual- or triple-systems, particularly for higher cut-off angles.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10291-014-0376-6</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1080-5370
ispartof GPS solutions, 2015-01, Vol.19 (1), p.151-163
issn 1080-5370
1521-1886
language eng
recordid cdi_proquest_journals_2259287966
source Springer Nature - Complete Springer Journals
subjects Ambiguity resolution (mathematics)
Atmospheric Sciences
Automotive Engineering
BeiDou Navigation Satellite System
Code Division Multiple Access
Computer simulation
Dilution
Earth and Environmental Science
Earth Sciences
Electrical Engineering
Empirical analysis
Galileo satellite system (Europe)
Geophysics/Geodesy
Global positioning systems
GPS
Integers
Navigation satellites
Original Article
Performance evaluation
Satellite navigation systems
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Visibility
title Combined BDS, Galileo, QZSS and GPS single-frequency RTK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20BDS,%20Galileo,%20QZSS%20and%20GPS%20single-frequency%20RTK&rft.jtitle=GPS%20solutions&rft.au=Odolinski,%20Robert&rft.date=2015-01-01&rft.volume=19&rft.issue=1&rft.spage=151&rft.epage=163&rft.pages=151-163&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-014-0376-6&rft_dat=%3Cproquest_cross%3E2259287966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259287966&rft_id=info:pmid/&rfr_iscdi=true