Combined BDS, Galileo, QZSS and GPS single-frequency RTK
We will focus on single-frequency single-baseline real-time kinematic (RTK) combining four Code Division Multiple Access (CDMA) satellite systems. We will combine observations from the Chinese BeiDou Navigation Satellite System (BDS), European Galileo, American Global Positioning System (GPS) and th...
Gespeichert in:
Veröffentlicht in: | GPS solutions 2015-01, Vol.19 (1), p.151-163 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | 1 |
container_start_page | 151 |
container_title | GPS solutions |
container_volume | 19 |
creator | Odolinski, Robert Teunissen, Peter J. G. Odijk, Dennis |
description | We will focus on single-frequency single-baseline real-time kinematic (RTK) combining four Code Division Multiple Access (CDMA) satellite systems. We will combine observations from the Chinese BeiDou Navigation Satellite System (BDS), European Galileo, American Global Positioning System (GPS) and the Japanese Quasi-Zenith Satellite System (QZSS). To further strengthen the underlying model, attention will be given to overlapping frequencies between the systems. If one can calibrate the inter-system biases, a common pivot satellite between the respective systems can be used to parameterize double-differenced ambiguities. The LAMBDA method is used for ambiguity resolution. The instantaneous (single-epoch) single-frequency RTK performance is evaluated by a formal as well as an empirical analysis, consisting of ambiguity dilution of precision (ADOP), bootstrapped and integer least-squares success rates and positioning precisions. The time-to-correct-fix in some particular cases when instantaneous RTK is not possible will also be analyzed. To simulate conditions with obstructed satellite visibility or when low-elevation multipath is present, various elevation cut-off angles between 10 and 40° will be used. Four days of real data are collected in Perth, Western Australia. It will be shown that the four-system RTK model allows for improved integer ambiguity resolution and positioning performance over the single-, dual- or triple-systems, particularly for higher cut-off angles. |
doi_str_mv | 10.1007/s10291-014-0376-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259287966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259287966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-82cf8cbf5c45d5e406f1556f7c65f5a2aa76d3d9715124f44bbc3aea594a08a03</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqXwA9gisdZw7fg5QoGCqMQjZWGxHMeuUqVJsduh_55UQWJiunc43znSh9AlgWsCIG8SAaoJBsIw5FJgcYRGhFOCiVLiuP9BAea5hFN0ltIKgILWbITUtFuXdeur7O6-mGQz29SN7ybZ-1dRZLatstlbkaW6XTYeh-i_d751--xj8XKOToJtkr_4vWP0-fiwmD7h-evseXo7xy5neosVdUG5MnDHeMU9AxEI5yJIJ3jgllorRZVXWhJOKAuMlaXLrbdcMwvKQj5GV0PvJnb9etqaVbeLbT9pKOWaKqmF6FNkSLnYpRR9MJtYr23cGwLmIMgMgkwvyBwEmQNDByb12Xbp41_z_9APdEllbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259287966</pqid></control><display><type>article</type><title>Combined BDS, Galileo, QZSS and GPS single-frequency RTK</title><source>Springer Nature - Complete Springer Journals</source><creator>Odolinski, Robert ; Teunissen, Peter J. G. ; Odijk, Dennis</creator><creatorcontrib>Odolinski, Robert ; Teunissen, Peter J. G. ; Odijk, Dennis</creatorcontrib><description>We will focus on single-frequency single-baseline real-time kinematic (RTK) combining four Code Division Multiple Access (CDMA) satellite systems. We will combine observations from the Chinese BeiDou Navigation Satellite System (BDS), European Galileo, American Global Positioning System (GPS) and the Japanese Quasi-Zenith Satellite System (QZSS). To further strengthen the underlying model, attention will be given to overlapping frequencies between the systems. If one can calibrate the inter-system biases, a common pivot satellite between the respective systems can be used to parameterize double-differenced ambiguities. The LAMBDA method is used for ambiguity resolution. The instantaneous (single-epoch) single-frequency RTK performance is evaluated by a formal as well as an empirical analysis, consisting of ambiguity dilution of precision (ADOP), bootstrapped and integer least-squares success rates and positioning precisions. The time-to-correct-fix in some particular cases when instantaneous RTK is not possible will also be analyzed. To simulate conditions with obstructed satellite visibility or when low-elevation multipath is present, various elevation cut-off angles between 10 and 40° will be used. Four days of real data are collected in Perth, Western Australia. It will be shown that the four-system RTK model allows for improved integer ambiguity resolution and positioning performance over the single-, dual- or triple-systems, particularly for higher cut-off angles.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-014-0376-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ambiguity resolution (mathematics) ; Atmospheric Sciences ; Automotive Engineering ; BeiDou Navigation Satellite System ; Code Division Multiple Access ; Computer simulation ; Dilution ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Empirical analysis ; Galileo satellite system (Europe) ; Geophysics/Geodesy ; Global positioning systems ; GPS ; Integers ; Navigation satellites ; Original Article ; Performance evaluation ; Satellite navigation systems ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Visibility</subject><ispartof>GPS solutions, 2015-01, Vol.19 (1), p.151-163</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>GPS Solutions is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-82cf8cbf5c45d5e406f1556f7c65f5a2aa76d3d9715124f44bbc3aea594a08a03</citedby><cites>FETCH-LOGICAL-c349t-82cf8cbf5c45d5e406f1556f7c65f5a2aa76d3d9715124f44bbc3aea594a08a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-014-0376-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-014-0376-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Odolinski, Robert</creatorcontrib><creatorcontrib>Teunissen, Peter J. G.</creatorcontrib><creatorcontrib>Odijk, Dennis</creatorcontrib><title>Combined BDS, Galileo, QZSS and GPS single-frequency RTK</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>We will focus on single-frequency single-baseline real-time kinematic (RTK) combining four Code Division Multiple Access (CDMA) satellite systems. We will combine observations from the Chinese BeiDou Navigation Satellite System (BDS), European Galileo, American Global Positioning System (GPS) and the Japanese Quasi-Zenith Satellite System (QZSS). To further strengthen the underlying model, attention will be given to overlapping frequencies between the systems. If one can calibrate the inter-system biases, a common pivot satellite between the respective systems can be used to parameterize double-differenced ambiguities. The LAMBDA method is used for ambiguity resolution. The instantaneous (single-epoch) single-frequency RTK performance is evaluated by a formal as well as an empirical analysis, consisting of ambiguity dilution of precision (ADOP), bootstrapped and integer least-squares success rates and positioning precisions. The time-to-correct-fix in some particular cases when instantaneous RTK is not possible will also be analyzed. To simulate conditions with obstructed satellite visibility or when low-elevation multipath is present, various elevation cut-off angles between 10 and 40° will be used. Four days of real data are collected in Perth, Western Australia. It will be shown that the four-system RTK model allows for improved integer ambiguity resolution and positioning performance over the single-, dual- or triple-systems, particularly for higher cut-off angles.</description><subject>Ambiguity resolution (mathematics)</subject><subject>Atmospheric Sciences</subject><subject>Automotive Engineering</subject><subject>BeiDou Navigation Satellite System</subject><subject>Code Division Multiple Access</subject><subject>Computer simulation</subject><subject>Dilution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Empirical analysis</subject><subject>Galileo satellite system (Europe)</subject><subject>Geophysics/Geodesy</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Integers</subject><subject>Navigation satellites</subject><subject>Original Article</subject><subject>Performance evaluation</subject><subject>Satellite navigation systems</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Visibility</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDtPwzAUhS0EEqXwA9gisdZw7fg5QoGCqMQjZWGxHMeuUqVJsduh_55UQWJiunc43znSh9AlgWsCIG8SAaoJBsIw5FJgcYRGhFOCiVLiuP9BAea5hFN0ltIKgILWbITUtFuXdeur7O6-mGQz29SN7ybZ-1dRZLatstlbkaW6XTYeh-i_d751--xj8XKOToJtkr_4vWP0-fiwmD7h-evseXo7xy5neosVdUG5MnDHeMU9AxEI5yJIJ3jgllorRZVXWhJOKAuMlaXLrbdcMwvKQj5GV0PvJnb9etqaVbeLbT9pKOWaKqmF6FNkSLnYpRR9MJtYr23cGwLmIMgMgkwvyBwEmQNDByb12Xbp41_z_9APdEllbw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Odolinski, Robert</creator><creator>Teunissen, Peter J. G.</creator><creator>Odijk, Dennis</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20150101</creationdate><title>Combined BDS, Galileo, QZSS and GPS single-frequency RTK</title><author>Odolinski, Robert ; Teunissen, Peter J. G. ; Odijk, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-82cf8cbf5c45d5e406f1556f7c65f5a2aa76d3d9715124f44bbc3aea594a08a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ambiguity resolution (mathematics)</topic><topic>Atmospheric Sciences</topic><topic>Automotive Engineering</topic><topic>BeiDou Navigation Satellite System</topic><topic>Code Division Multiple Access</topic><topic>Computer simulation</topic><topic>Dilution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Empirical analysis</topic><topic>Galileo satellite system (Europe)</topic><topic>Geophysics/Geodesy</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Integers</topic><topic>Navigation satellites</topic><topic>Original Article</topic><topic>Performance evaluation</topic><topic>Satellite navigation systems</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odolinski, Robert</creatorcontrib><creatorcontrib>Teunissen, Peter J. G.</creatorcontrib><creatorcontrib>Odijk, Dennis</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odolinski, Robert</au><au>Teunissen, Peter J. G.</au><au>Odijk, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined BDS, Galileo, QZSS and GPS single-frequency RTK</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>19</volume><issue>1</issue><spage>151</spage><epage>163</epage><pages>151-163</pages><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>We will focus on single-frequency single-baseline real-time kinematic (RTK) combining four Code Division Multiple Access (CDMA) satellite systems. We will combine observations from the Chinese BeiDou Navigation Satellite System (BDS), European Galileo, American Global Positioning System (GPS) and the Japanese Quasi-Zenith Satellite System (QZSS). To further strengthen the underlying model, attention will be given to overlapping frequencies between the systems. If one can calibrate the inter-system biases, a common pivot satellite between the respective systems can be used to parameterize double-differenced ambiguities. The LAMBDA method is used for ambiguity resolution. The instantaneous (single-epoch) single-frequency RTK performance is evaluated by a formal as well as an empirical analysis, consisting of ambiguity dilution of precision (ADOP), bootstrapped and integer least-squares success rates and positioning precisions. The time-to-correct-fix in some particular cases when instantaneous RTK is not possible will also be analyzed. To simulate conditions with obstructed satellite visibility or when low-elevation multipath is present, various elevation cut-off angles between 10 and 40° will be used. Four days of real data are collected in Perth, Western Australia. It will be shown that the four-system RTK model allows for improved integer ambiguity resolution and positioning performance over the single-, dual- or triple-systems, particularly for higher cut-off angles.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10291-014-0376-6</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1080-5370 |
ispartof | GPS solutions, 2015-01, Vol.19 (1), p.151-163 |
issn | 1080-5370 1521-1886 |
language | eng |
recordid | cdi_proquest_journals_2259287966 |
source | Springer Nature - Complete Springer Journals |
subjects | Ambiguity resolution (mathematics) Atmospheric Sciences Automotive Engineering BeiDou Navigation Satellite System Code Division Multiple Access Computer simulation Dilution Earth and Environmental Science Earth Sciences Electrical Engineering Empirical analysis Galileo satellite system (Europe) Geophysics/Geodesy Global positioning systems GPS Integers Navigation satellites Original Article Performance evaluation Satellite navigation systems Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Visibility |
title | Combined BDS, Galileo, QZSS and GPS single-frequency RTK |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20BDS,%20Galileo,%20QZSS%20and%20GPS%20single-frequency%20RTK&rft.jtitle=GPS%20solutions&rft.au=Odolinski,%20Robert&rft.date=2015-01-01&rft.volume=19&rft.issue=1&rft.spage=151&rft.epage=163&rft.pages=151-163&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-014-0376-6&rft_dat=%3Cproquest_cross%3E2259287966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259287966&rft_id=info:pmid/&rfr_iscdi=true |