The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations
Existing algorithms for GPS ambiguity determination can be classified into three categories, i.e. ambiguity resolution in the measurement domain, the coordinate domain and the ambiguity domain. There are many techniques available for searching the ambiguity domain, such as FARA (Frei and Beutler in...
Gespeichert in:
Veröffentlicht in: | GPS solutions 2009-07, Vol.13 (3), p.221-230 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 3 |
container_start_page | 221 |
container_title | GPS solutions |
container_volume | 13 |
creator | Cai, Jianqing Grafarend, Erik W. Hu, Congwei |
description | Existing algorithms for GPS ambiguity determination can be classified into three categories, i.e. ambiguity resolution in the measurement domain, the coordinate domain and the ambiguity domain. There are many techniques available for searching the ambiguity domain, such as FARA (Frei and Beutler in Manuscr Geod 15(4):325–356,
1990
), LSAST (Hatch in Proceedings of KIS’90, Banff, Canada, pp 299–308,
1990
), the modified
Cholesky
decomposition method (Euler and Landau in Proceedings of the sixth international geodetic symposium on satellite positioning, Columbus, Ohio, pp 650–659,
1992
), LAMBDA (Teunissen in Invited lecture, section IV theory and methodology, IAG general meeting, Beijing, China,
1993
), FASF (Chen and Lachapelle in J Inst Navig 42(2):371–390,
1995
) and modified LLL Algorithm (Grafarend in GPS Solut 4(2):31–44,
2000
; Lou and Grafarend in Zeitschrift für Vermessungswesen 3:203–210,
2003
). The widely applied LAMBDA method is based on the
Least Squares Ambiguity Search
(LSAS) criterion and employs an effective decorrelation technique in addition. G. Xu (J Glob Position Syst 1(2):121–131,
2002
) proposed also a new general criterion together with its equivalent objective function for ambiguity searching that can be carried out in the coordinate domain, the ambiguity domain or both. Xu’s objective function differs from the LSAS function, leading to different numerical results. The cause of this difference is identified in this contribution and corrected. After correction, the Xu’s approach and the one implied in LAMBDA are identical. We have developed a total optimal search criterion for the mixed integer linear model resolving integer ambiguities in both coordinate and ambiguity domain, and derived the orthogonal decomposition of the objective function and the related minimum expressions algebraically and geometrically. This criterion is verified with real GPS phase data. The theoretical and numerical results show that (1) the LSAS objective function can be derived from the total optimal search criterion with the constraint on the fixed integer ambiguity parameters, and (2) Xu’s derivation of the equivalent objective function was incorrect, leading to an incorrect search procedure. The effects of the total optimal criterion on GPS carrier phase data processing are discussed and its practical implementation is also proposed. |
doi_str_mv | 10.1007/s10291-008-0115-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259275870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259275870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4aa02b83256dbe980f2ea839f634d7ea4ec98f70de0e0cf40dcf8e89956615513</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4soOKcfwFvAc_UlbdrkKEOnIHrYPIesfV0zuqZLsum-vRkVPHl6j5ff_x_4JckthXsKUD54CkzSFECkQClPj2fJhHJGUypEcR53EJDyrITL5Mr7DQADKfNJslu2SIINuiN2CGYbp0ftqpZUzgR0xvbE9MTb7mD6NQmR3ppvrOMx4Bod6UwfebK1NXbky4SWzN8XC1Jp50x8HlrtkdiVR3fQIbb56-Si0Z3Hm985TT6fn5azl_TtY_46e3xLq4wWIc21BrYSGeNFvUIpoGGoRSabIsvrEnWOlRRNCTUCQtXkUFeNQCElLwrKOc2myd3YOzi726MPamP3ro9fKsa4ZCUXJUSKjlTlrPcOGzW4aMEdFQV1MqtGsyqaVSez6hgzbMz4yPZRwl_z_6EfqyF9pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259275870</pqid></control><display><type>article</type><title>The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations</title><source>Springer Nature - Complete Springer Journals</source><creator>Cai, Jianqing ; Grafarend, Erik W. ; Hu, Congwei</creator><creatorcontrib>Cai, Jianqing ; Grafarend, Erik W. ; Hu, Congwei</creatorcontrib><description>Existing algorithms for GPS ambiguity determination can be classified into three categories, i.e. ambiguity resolution in the measurement domain, the coordinate domain and the ambiguity domain. There are many techniques available for searching the ambiguity domain, such as FARA (Frei and Beutler in Manuscr Geod 15(4):325–356,
1990
), LSAST (Hatch in Proceedings of KIS’90, Banff, Canada, pp 299–308,
1990
), the modified
Cholesky
decomposition method (Euler and Landau in Proceedings of the sixth international geodetic symposium on satellite positioning, Columbus, Ohio, pp 650–659,
1992
), LAMBDA (Teunissen in Invited lecture, section IV theory and methodology, IAG general meeting, Beijing, China,
1993
), FASF (Chen and Lachapelle in J Inst Navig 42(2):371–390,
1995
) and modified LLL Algorithm (Grafarend in GPS Solut 4(2):31–44,
2000
; Lou and Grafarend in Zeitschrift für Vermessungswesen 3:203–210,
2003
). The widely applied LAMBDA method is based on the
Least Squares Ambiguity Search
(LSAS) criterion and employs an effective decorrelation technique in addition. G. Xu (J Glob Position Syst 1(2):121–131,
2002
) proposed also a new general criterion together with its equivalent objective function for ambiguity searching that can be carried out in the coordinate domain, the ambiguity domain or both. Xu’s objective function differs from the LSAS function, leading to different numerical results. The cause of this difference is identified in this contribution and corrected. After correction, the Xu’s approach and the one implied in LAMBDA are identical. We have developed a total optimal search criterion for the mixed integer linear model resolving integer ambiguities in both coordinate and ambiguity domain, and derived the orthogonal decomposition of the objective function and the related minimum expressions algebraically and geometrically. This criterion is verified with real GPS phase data. The theoretical and numerical results show that (1) the LSAS objective function can be derived from the total optimal search criterion with the constraint on the fixed integer ambiguity parameters, and (2) Xu’s derivation of the equivalent objective function was incorrect, leading to an incorrect search procedure. The effects of the total optimal criterion on GPS carrier phase data processing are discussed and its practical implementation is also proposed.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-008-0115-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Ambiguity resolution (mathematics) ; Atmospheric Sciences ; Automotive Engineering ; Criteria ; Data processing ; Decomposition ; Domains ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Equivalence ; Geophysics/Geodesy ; Global navigation satellite system ; Global positioning systems ; GPS ; Mathematical models ; Mixed integer ; Objective function ; Original Article ; Satellite observation ; Searching ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics</subject><ispartof>GPS solutions, 2009-07, Vol.13 (3), p.221-230</ispartof><rights>Springer-Verlag 2009</rights><rights>GPS Solutions is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4aa02b83256dbe980f2ea839f634d7ea4ec98f70de0e0cf40dcf8e89956615513</citedby><cites>FETCH-LOGICAL-c316t-4aa02b83256dbe980f2ea839f634d7ea4ec98f70de0e0cf40dcf8e89956615513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-008-0115-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-008-0115-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Cai, Jianqing</creatorcontrib><creatorcontrib>Grafarend, Erik W.</creatorcontrib><creatorcontrib>Hu, Congwei</creatorcontrib><title>The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>Existing algorithms for GPS ambiguity determination can be classified into three categories, i.e. ambiguity resolution in the measurement domain, the coordinate domain and the ambiguity domain. There are many techniques available for searching the ambiguity domain, such as FARA (Frei and Beutler in Manuscr Geod 15(4):325–356,
1990
), LSAST (Hatch in Proceedings of KIS’90, Banff, Canada, pp 299–308,
1990
), the modified
Cholesky
decomposition method (Euler and Landau in Proceedings of the sixth international geodetic symposium on satellite positioning, Columbus, Ohio, pp 650–659,
1992
), LAMBDA (Teunissen in Invited lecture, section IV theory and methodology, IAG general meeting, Beijing, China,
1993
), FASF (Chen and Lachapelle in J Inst Navig 42(2):371–390,
1995
) and modified LLL Algorithm (Grafarend in GPS Solut 4(2):31–44,
2000
; Lou and Grafarend in Zeitschrift für Vermessungswesen 3:203–210,
2003
). The widely applied LAMBDA method is based on the
Least Squares Ambiguity Search
(LSAS) criterion and employs an effective decorrelation technique in addition. G. Xu (J Glob Position Syst 1(2):121–131,
2002
) proposed also a new general criterion together with its equivalent objective function for ambiguity searching that can be carried out in the coordinate domain, the ambiguity domain or both. Xu’s objective function differs from the LSAS function, leading to different numerical results. The cause of this difference is identified in this contribution and corrected. After correction, the Xu’s approach and the one implied in LAMBDA are identical. We have developed a total optimal search criterion for the mixed integer linear model resolving integer ambiguities in both coordinate and ambiguity domain, and derived the orthogonal decomposition of the objective function and the related minimum expressions algebraically and geometrically. This criterion is verified with real GPS phase data. The theoretical and numerical results show that (1) the LSAS objective function can be derived from the total optimal search criterion with the constraint on the fixed integer ambiguity parameters, and (2) Xu’s derivation of the equivalent objective function was incorrect, leading to an incorrect search procedure. The effects of the total optimal criterion on GPS carrier phase data processing are discussed and its practical implementation is also proposed.</description><subject>Algorithms</subject><subject>Ambiguity resolution (mathematics)</subject><subject>Atmospheric Sciences</subject><subject>Automotive Engineering</subject><subject>Criteria</subject><subject>Data processing</subject><subject>Decomposition</subject><subject>Domains</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Equivalence</subject><subject>Geophysics/Geodesy</subject><subject>Global navigation satellite system</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Mathematical models</subject><subject>Mixed integer</subject><subject>Objective function</subject><subject>Original Article</subject><subject>Satellite observation</subject><subject>Searching</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLwzAUx4soOKcfwFvAc_UlbdrkKEOnIHrYPIesfV0zuqZLsum-vRkVPHl6j5ff_x_4JckthXsKUD54CkzSFECkQClPj2fJhHJGUypEcR53EJDyrITL5Mr7DQADKfNJslu2SIINuiN2CGYbp0ftqpZUzgR0xvbE9MTb7mD6NQmR3ppvrOMx4Bod6UwfebK1NXbky4SWzN8XC1Jp50x8HlrtkdiVR3fQIbb56-Si0Z3Hm985TT6fn5azl_TtY_46e3xLq4wWIc21BrYSGeNFvUIpoGGoRSabIsvrEnWOlRRNCTUCQtXkUFeNQCElLwrKOc2myd3YOzi726MPamP3ro9fKsa4ZCUXJUSKjlTlrPcOGzW4aMEdFQV1MqtGsyqaVSez6hgzbMz4yPZRwl_z_6EfqyF9pA</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Cai, Jianqing</creator><creator>Grafarend, Erik W.</creator><creator>Hu, Congwei</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20090701</creationdate><title>The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations</title><author>Cai, Jianqing ; Grafarend, Erik W. ; Hu, Congwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4aa02b83256dbe980f2ea839f634d7ea4ec98f70de0e0cf40dcf8e89956615513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Ambiguity resolution (mathematics)</topic><topic>Atmospheric Sciences</topic><topic>Automotive Engineering</topic><topic>Criteria</topic><topic>Data processing</topic><topic>Decomposition</topic><topic>Domains</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Equivalence</topic><topic>Geophysics/Geodesy</topic><topic>Global navigation satellite system</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Mathematical models</topic><topic>Mixed integer</topic><topic>Objective function</topic><topic>Original Article</topic><topic>Satellite observation</topic><topic>Searching</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Jianqing</creatorcontrib><creatorcontrib>Grafarend, Erik W.</creatorcontrib><creatorcontrib>Hu, Congwei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Jianqing</au><au>Grafarend, Erik W.</au><au>Hu, Congwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>13</volume><issue>3</issue><spage>221</spage><epage>230</epage><pages>221-230</pages><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>Existing algorithms for GPS ambiguity determination can be classified into three categories, i.e. ambiguity resolution in the measurement domain, the coordinate domain and the ambiguity domain. There are many techniques available for searching the ambiguity domain, such as FARA (Frei and Beutler in Manuscr Geod 15(4):325–356,
1990
), LSAST (Hatch in Proceedings of KIS’90, Banff, Canada, pp 299–308,
1990
), the modified
Cholesky
decomposition method (Euler and Landau in Proceedings of the sixth international geodetic symposium on satellite positioning, Columbus, Ohio, pp 650–659,
1992
), LAMBDA (Teunissen in Invited lecture, section IV theory and methodology, IAG general meeting, Beijing, China,
1993
), FASF (Chen and Lachapelle in J Inst Navig 42(2):371–390,
1995
) and modified LLL Algorithm (Grafarend in GPS Solut 4(2):31–44,
2000
; Lou and Grafarend in Zeitschrift für Vermessungswesen 3:203–210,
2003
). The widely applied LAMBDA method is based on the
Least Squares Ambiguity Search
(LSAS) criterion and employs an effective decorrelation technique in addition. G. Xu (J Glob Position Syst 1(2):121–131,
2002
) proposed also a new general criterion together with its equivalent objective function for ambiguity searching that can be carried out in the coordinate domain, the ambiguity domain or both. Xu’s objective function differs from the LSAS function, leading to different numerical results. The cause of this difference is identified in this contribution and corrected. After correction, the Xu’s approach and the one implied in LAMBDA are identical. We have developed a total optimal search criterion for the mixed integer linear model resolving integer ambiguities in both coordinate and ambiguity domain, and derived the orthogonal decomposition of the objective function and the related minimum expressions algebraically and geometrically. This criterion is verified with real GPS phase data. The theoretical and numerical results show that (1) the LSAS objective function can be derived from the total optimal search criterion with the constraint on the fixed integer ambiguity parameters, and (2) Xu’s derivation of the equivalent objective function was incorrect, leading to an incorrect search procedure. The effects of the total optimal criterion on GPS carrier phase data processing are discussed and its practical implementation is also proposed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10291-008-0115-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1080-5370 |
ispartof | GPS solutions, 2009-07, Vol.13 (3), p.221-230 |
issn | 1080-5370 1521-1886 |
language | eng |
recordid | cdi_proquest_journals_2259275870 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Ambiguity resolution (mathematics) Atmospheric Sciences Automotive Engineering Criteria Data processing Decomposition Domains Earth and Environmental Science Earth Sciences Electrical Engineering Equivalence Geophysics/Geodesy Global navigation satellite system Global positioning systems GPS Mathematical models Mixed integer Objective function Original Article Satellite observation Searching Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics |
title | The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20total%20optimal%20search%20criterion%20in%20solving%20the%20mixed%20integer%20linear%20model%20with%20GNSS%20carrier%20phase%20observations&rft.jtitle=GPS%20solutions&rft.au=Cai,%20Jianqing&rft.date=2009-07-01&rft.volume=13&rft.issue=3&rft.spage=221&rft.epage=230&rft.pages=221-230&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-008-0115-y&rft_dat=%3Cproquest_cross%3E2259275870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259275870&rft_id=info:pmid/&rfr_iscdi=true |