The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations

Existing algorithms for GPS ambiguity determination can be classified into three categories, i.e. ambiguity resolution in the measurement domain, the coordinate domain and the ambiguity domain. There are many techniques available for searching the ambiguity domain, such as FARA (Frei and Beutler in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GPS solutions 2009-07, Vol.13 (3), p.221-230
Hauptverfasser: Cai, Jianqing, Grafarend, Erik W., Hu, Congwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue 3
container_start_page 221
container_title GPS solutions
container_volume 13
creator Cai, Jianqing
Grafarend, Erik W.
Hu, Congwei
description Existing algorithms for GPS ambiguity determination can be classified into three categories, i.e. ambiguity resolution in the measurement domain, the coordinate domain and the ambiguity domain. There are many techniques available for searching the ambiguity domain, such as FARA (Frei and Beutler in Manuscr Geod 15(4):325–356, 1990 ), LSAST (Hatch in Proceedings of KIS’90, Banff, Canada, pp 299–308, 1990 ), the modified Cholesky decomposition method (Euler and Landau in Proceedings of the sixth international geodetic symposium on satellite positioning, Columbus, Ohio, pp 650–659, 1992 ), LAMBDA (Teunissen in Invited lecture, section IV theory and methodology, IAG general meeting, Beijing, China, 1993 ), FASF (Chen and Lachapelle in J Inst Navig 42(2):371–390, 1995 ) and modified LLL Algorithm (Grafarend in GPS Solut 4(2):31–44, 2000 ; Lou and Grafarend in Zeitschrift für Vermessungswesen 3:203–210, 2003 ). The widely applied LAMBDA method is based on the Least Squares Ambiguity Search (LSAS) criterion and employs an effective decorrelation technique in addition. G. Xu (J Glob Position Syst 1(2):121–131, 2002 ) proposed also a new general criterion together with its equivalent objective function for ambiguity searching that can be carried out in the coordinate domain, the ambiguity domain or both. Xu’s objective function differs from the LSAS function, leading to different numerical results. The cause of this difference is identified in this contribution and corrected. After correction, the Xu’s approach and the one implied in LAMBDA are identical. We have developed a total optimal search criterion for the mixed integer linear model resolving integer ambiguities in both coordinate and ambiguity domain, and derived the orthogonal decomposition of the objective function and the related minimum expressions algebraically and geometrically. This criterion is verified with real GPS phase data. The theoretical and numerical results show that (1) the LSAS objective function can be derived from the total optimal search criterion with the constraint on the fixed integer ambiguity parameters, and (2) Xu’s derivation of the equivalent objective function was incorrect, leading to an incorrect search procedure. The effects of the total optimal criterion on GPS carrier phase data processing are discussed and its practical implementation is also proposed.
doi_str_mv 10.1007/s10291-008-0115-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259275870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259275870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4aa02b83256dbe980f2ea839f634d7ea4ec98f70de0e0cf40dcf8e89956615513</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4soOKcfwFvAc_UlbdrkKEOnIHrYPIesfV0zuqZLsum-vRkVPHl6j5ff_x_4JckthXsKUD54CkzSFECkQClPj2fJhHJGUypEcR53EJDyrITL5Mr7DQADKfNJslu2SIINuiN2CGYbp0ftqpZUzgR0xvbE9MTb7mD6NQmR3ppvrOMx4Bod6UwfebK1NXbky4SWzN8XC1Jp50x8HlrtkdiVR3fQIbb56-Si0Z3Hm985TT6fn5azl_TtY_46e3xLq4wWIc21BrYSGeNFvUIpoGGoRSabIsvrEnWOlRRNCTUCQtXkUFeNQCElLwrKOc2myd3YOzi726MPamP3ro9fKsa4ZCUXJUSKjlTlrPcOGzW4aMEdFQV1MqtGsyqaVSez6hgzbMz4yPZRwl_z_6EfqyF9pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259275870</pqid></control><display><type>article</type><title>The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations</title><source>Springer Nature - Complete Springer Journals</source><creator>Cai, Jianqing ; Grafarend, Erik W. ; Hu, Congwei</creator><creatorcontrib>Cai, Jianqing ; Grafarend, Erik W. ; Hu, Congwei</creatorcontrib><description>Existing algorithms for GPS ambiguity determination can be classified into three categories, i.e. ambiguity resolution in the measurement domain, the coordinate domain and the ambiguity domain. There are many techniques available for searching the ambiguity domain, such as FARA (Frei and Beutler in Manuscr Geod 15(4):325–356, 1990 ), LSAST (Hatch in Proceedings of KIS’90, Banff, Canada, pp 299–308, 1990 ), the modified Cholesky decomposition method (Euler and Landau in Proceedings of the sixth international geodetic symposium on satellite positioning, Columbus, Ohio, pp 650–659, 1992 ), LAMBDA (Teunissen in Invited lecture, section IV theory and methodology, IAG general meeting, Beijing, China, 1993 ), FASF (Chen and Lachapelle in J Inst Navig 42(2):371–390, 1995 ) and modified LLL Algorithm (Grafarend in GPS Solut 4(2):31–44, 2000 ; Lou and Grafarend in Zeitschrift für Vermessungswesen 3:203–210, 2003 ). The widely applied LAMBDA method is based on the Least Squares Ambiguity Search (LSAS) criterion and employs an effective decorrelation technique in addition. G. Xu (J Glob Position Syst 1(2):121–131, 2002 ) proposed also a new general criterion together with its equivalent objective function for ambiguity searching that can be carried out in the coordinate domain, the ambiguity domain or both. Xu’s objective function differs from the LSAS function, leading to different numerical results. The cause of this difference is identified in this contribution and corrected. After correction, the Xu’s approach and the one implied in LAMBDA are identical. We have developed a total optimal search criterion for the mixed integer linear model resolving integer ambiguities in both coordinate and ambiguity domain, and derived the orthogonal decomposition of the objective function and the related minimum expressions algebraically and geometrically. This criterion is verified with real GPS phase data. The theoretical and numerical results show that (1) the LSAS objective function can be derived from the total optimal search criterion with the constraint on the fixed integer ambiguity parameters, and (2) Xu’s derivation of the equivalent objective function was incorrect, leading to an incorrect search procedure. The effects of the total optimal criterion on GPS carrier phase data processing are discussed and its practical implementation is also proposed.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-008-0115-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Ambiguity resolution (mathematics) ; Atmospheric Sciences ; Automotive Engineering ; Criteria ; Data processing ; Decomposition ; Domains ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Equivalence ; Geophysics/Geodesy ; Global navigation satellite system ; Global positioning systems ; GPS ; Mathematical models ; Mixed integer ; Objective function ; Original Article ; Satellite observation ; Searching ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics</subject><ispartof>GPS solutions, 2009-07, Vol.13 (3), p.221-230</ispartof><rights>Springer-Verlag 2009</rights><rights>GPS Solutions is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4aa02b83256dbe980f2ea839f634d7ea4ec98f70de0e0cf40dcf8e89956615513</citedby><cites>FETCH-LOGICAL-c316t-4aa02b83256dbe980f2ea839f634d7ea4ec98f70de0e0cf40dcf8e89956615513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-008-0115-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-008-0115-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Cai, Jianqing</creatorcontrib><creatorcontrib>Grafarend, Erik W.</creatorcontrib><creatorcontrib>Hu, Congwei</creatorcontrib><title>The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>Existing algorithms for GPS ambiguity determination can be classified into three categories, i.e. ambiguity resolution in the measurement domain, the coordinate domain and the ambiguity domain. There are many techniques available for searching the ambiguity domain, such as FARA (Frei and Beutler in Manuscr Geod 15(4):325–356, 1990 ), LSAST (Hatch in Proceedings of KIS’90, Banff, Canada, pp 299–308, 1990 ), the modified Cholesky decomposition method (Euler and Landau in Proceedings of the sixth international geodetic symposium on satellite positioning, Columbus, Ohio, pp 650–659, 1992 ), LAMBDA (Teunissen in Invited lecture, section IV theory and methodology, IAG general meeting, Beijing, China, 1993 ), FASF (Chen and Lachapelle in J Inst Navig 42(2):371–390, 1995 ) and modified LLL Algorithm (Grafarend in GPS Solut 4(2):31–44, 2000 ; Lou and Grafarend in Zeitschrift für Vermessungswesen 3:203–210, 2003 ). The widely applied LAMBDA method is based on the Least Squares Ambiguity Search (LSAS) criterion and employs an effective decorrelation technique in addition. G. Xu (J Glob Position Syst 1(2):121–131, 2002 ) proposed also a new general criterion together with its equivalent objective function for ambiguity searching that can be carried out in the coordinate domain, the ambiguity domain or both. Xu’s objective function differs from the LSAS function, leading to different numerical results. The cause of this difference is identified in this contribution and corrected. After correction, the Xu’s approach and the one implied in LAMBDA are identical. We have developed a total optimal search criterion for the mixed integer linear model resolving integer ambiguities in both coordinate and ambiguity domain, and derived the orthogonal decomposition of the objective function and the related minimum expressions algebraically and geometrically. This criterion is verified with real GPS phase data. The theoretical and numerical results show that (1) the LSAS objective function can be derived from the total optimal search criterion with the constraint on the fixed integer ambiguity parameters, and (2) Xu’s derivation of the equivalent objective function was incorrect, leading to an incorrect search procedure. The effects of the total optimal criterion on GPS carrier phase data processing are discussed and its practical implementation is also proposed.</description><subject>Algorithms</subject><subject>Ambiguity resolution (mathematics)</subject><subject>Atmospheric Sciences</subject><subject>Automotive Engineering</subject><subject>Criteria</subject><subject>Data processing</subject><subject>Decomposition</subject><subject>Domains</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Equivalence</subject><subject>Geophysics/Geodesy</subject><subject>Global navigation satellite system</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Mathematical models</subject><subject>Mixed integer</subject><subject>Objective function</subject><subject>Original Article</subject><subject>Satellite observation</subject><subject>Searching</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLwzAUx4soOKcfwFvAc_UlbdrkKEOnIHrYPIesfV0zuqZLsum-vRkVPHl6j5ff_x_4JckthXsKUD54CkzSFECkQClPj2fJhHJGUypEcR53EJDyrITL5Mr7DQADKfNJslu2SIINuiN2CGYbp0ftqpZUzgR0xvbE9MTb7mD6NQmR3ppvrOMx4Bod6UwfebK1NXbky4SWzN8XC1Jp50x8HlrtkdiVR3fQIbb56-Si0Z3Hm985TT6fn5azl_TtY_46e3xLq4wWIc21BrYSGeNFvUIpoGGoRSabIsvrEnWOlRRNCTUCQtXkUFeNQCElLwrKOc2myd3YOzi726MPamP3ro9fKsa4ZCUXJUSKjlTlrPcOGzW4aMEdFQV1MqtGsyqaVSez6hgzbMz4yPZRwl_z_6EfqyF9pA</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Cai, Jianqing</creator><creator>Grafarend, Erik W.</creator><creator>Hu, Congwei</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20090701</creationdate><title>The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations</title><author>Cai, Jianqing ; Grafarend, Erik W. ; Hu, Congwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4aa02b83256dbe980f2ea839f634d7ea4ec98f70de0e0cf40dcf8e89956615513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Ambiguity resolution (mathematics)</topic><topic>Atmospheric Sciences</topic><topic>Automotive Engineering</topic><topic>Criteria</topic><topic>Data processing</topic><topic>Decomposition</topic><topic>Domains</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Equivalence</topic><topic>Geophysics/Geodesy</topic><topic>Global navigation satellite system</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Mathematical models</topic><topic>Mixed integer</topic><topic>Objective function</topic><topic>Original Article</topic><topic>Satellite observation</topic><topic>Searching</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Jianqing</creatorcontrib><creatorcontrib>Grafarend, Erik W.</creatorcontrib><creatorcontrib>Hu, Congwei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Jianqing</au><au>Grafarend, Erik W.</au><au>Hu, Congwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>13</volume><issue>3</issue><spage>221</spage><epage>230</epage><pages>221-230</pages><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>Existing algorithms for GPS ambiguity determination can be classified into three categories, i.e. ambiguity resolution in the measurement domain, the coordinate domain and the ambiguity domain. There are many techniques available for searching the ambiguity domain, such as FARA (Frei and Beutler in Manuscr Geod 15(4):325–356, 1990 ), LSAST (Hatch in Proceedings of KIS’90, Banff, Canada, pp 299–308, 1990 ), the modified Cholesky decomposition method (Euler and Landau in Proceedings of the sixth international geodetic symposium on satellite positioning, Columbus, Ohio, pp 650–659, 1992 ), LAMBDA (Teunissen in Invited lecture, section IV theory and methodology, IAG general meeting, Beijing, China, 1993 ), FASF (Chen and Lachapelle in J Inst Navig 42(2):371–390, 1995 ) and modified LLL Algorithm (Grafarend in GPS Solut 4(2):31–44, 2000 ; Lou and Grafarend in Zeitschrift für Vermessungswesen 3:203–210, 2003 ). The widely applied LAMBDA method is based on the Least Squares Ambiguity Search (LSAS) criterion and employs an effective decorrelation technique in addition. G. Xu (J Glob Position Syst 1(2):121–131, 2002 ) proposed also a new general criterion together with its equivalent objective function for ambiguity searching that can be carried out in the coordinate domain, the ambiguity domain or both. Xu’s objective function differs from the LSAS function, leading to different numerical results. The cause of this difference is identified in this contribution and corrected. After correction, the Xu’s approach and the one implied in LAMBDA are identical. We have developed a total optimal search criterion for the mixed integer linear model resolving integer ambiguities in both coordinate and ambiguity domain, and derived the orthogonal decomposition of the objective function and the related minimum expressions algebraically and geometrically. This criterion is verified with real GPS phase data. The theoretical and numerical results show that (1) the LSAS objective function can be derived from the total optimal search criterion with the constraint on the fixed integer ambiguity parameters, and (2) Xu’s derivation of the equivalent objective function was incorrect, leading to an incorrect search procedure. The effects of the total optimal criterion on GPS carrier phase data processing are discussed and its practical implementation is also proposed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10291-008-0115-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1080-5370
ispartof GPS solutions, 2009-07, Vol.13 (3), p.221-230
issn 1080-5370
1521-1886
language eng
recordid cdi_proquest_journals_2259275870
source Springer Nature - Complete Springer Journals
subjects Algorithms
Ambiguity resolution (mathematics)
Atmospheric Sciences
Automotive Engineering
Criteria
Data processing
Decomposition
Domains
Earth and Environmental Science
Earth Sciences
Electrical Engineering
Equivalence
Geophysics/Geodesy
Global navigation satellite system
Global positioning systems
GPS
Mathematical models
Mixed integer
Objective function
Original Article
Satellite observation
Searching
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
title The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20total%20optimal%20search%20criterion%20in%20solving%20the%20mixed%20integer%20linear%20model%20with%20GNSS%20carrier%20phase%20observations&rft.jtitle=GPS%20solutions&rft.au=Cai,%20Jianqing&rft.date=2009-07-01&rft.volume=13&rft.issue=3&rft.spage=221&rft.epage=230&rft.pages=221-230&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-008-0115-y&rft_dat=%3Cproquest_cross%3E2259275870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259275870&rft_id=info:pmid/&rfr_iscdi=true