A comparison of riparian vegetation sampling methods along a large, regulated river
Monitoring riparian vegetation cover and species richness is an important component of assessing change and understanding ecosystem processes. Vegetation sampling methods determined to be the best option in other ecosystems (e.g., desert grasslands and arctic tundra) may not be the best option in mu...
Gespeichert in:
Veröffentlicht in: | River research and applications 2019-07, Vol.35 (6), p.759-767 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 767 |
---|---|
container_issue | 6 |
container_start_page | 759 |
container_title | River research and applications |
container_volume | 35 |
creator | Palmquist, Emily C. Sterner, Sarah A. Ralston, Barbara E. |
description | Monitoring riparian vegetation cover and species richness is an important component of assessing change and understanding ecosystem processes. Vegetation sampling methods determined to be the best option in other ecosystems (e.g., desert grasslands and arctic tundra) may not be the best option in multilayered, species rich, heterogeneous riparian vegetation. This study examines the strengths and weaknesses of two common vegetation sampling methods, line‐point intercept and ocular quadrat estimates. Permutational analysis of variance analyses indicate that cover estimates among observers did not differ significantly for either line‐point intercept or ocular quadrat estimates. Line‐point intercept cover estimates resulted in lower coefficient of variation among observers than ocular quadrat estimates, but the ocular quadrat estimates recorded significantly more species. Line‐point estimates of cover were generally larger than ocular quadrat estimates. Ocular quadrat estimates are appropriate when assessment of richness is important, in areas with heterogeneous geomorphology and hydrology where fine‐scale measurements are most useful, and in areas where continuous sampling transects are impracticable. Line‐point intercept estimates are useful when minimum variation among observers is necessary, continuous transects are logical and practicable for the sampling area, woody cover does not present a logistical complication, and species richness is not a priority. |
doi_str_mv | 10.1002/rra.3440 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259254305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259254305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-a48467ad534baa62e4f260ddb90d707c8ff5fcc0a8c597a76f016f8cc80acaed3</originalsourceid><addsrcrecordid>eNp1kFtLAzEQhYMoWKvgTwj44oOrs9lkL4-leIOCUPU5THNZt-xu1mRb6b83teKbTzNn-GbOcAi5TOE2BWB33uNtxjkckUkqMpGkPC-O_3pRnZKzENYAaVFW5YS8zqhy3YC-Ca6nzlLf7AX2dGtqM-LYxHHAbmibvqadGT-cDhRbFxXSFn1tbqg39abF0ei4vTX-nJxYbIO5-K1T8v5w_zZ_ShYvj8_z2SJRrMogQV7G31CLjK8Qc2a4ZTlovapAF1Co0lphlQIslagKLHILaW5LpUpAhUZnU3J1uDt497kxYZRrt_F9tJSMiYoJnoGI1PWBUt6F4I2Vg2869DuZgtxHJmNkch9ZRJMD-tW0ZvcvJ5fL2Q__DfKIbcs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259254305</pqid></control><display><type>article</type><title>A comparison of riparian vegetation sampling methods along a large, regulated river</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Palmquist, Emily C. ; Sterner, Sarah A. ; Ralston, Barbara E.</creator><creatorcontrib>Palmquist, Emily C. ; Sterner, Sarah A. ; Ralston, Barbara E.</creatorcontrib><description>Monitoring riparian vegetation cover and species richness is an important component of assessing change and understanding ecosystem processes. Vegetation sampling methods determined to be the best option in other ecosystems (e.g., desert grasslands and arctic tundra) may not be the best option in multilayered, species rich, heterogeneous riparian vegetation. This study examines the strengths and weaknesses of two common vegetation sampling methods, line‐point intercept and ocular quadrat estimates. Permutational analysis of variance analyses indicate that cover estimates among observers did not differ significantly for either line‐point intercept or ocular quadrat estimates. Line‐point intercept cover estimates resulted in lower coefficient of variation among observers than ocular quadrat estimates, but the ocular quadrat estimates recorded significantly more species. Line‐point estimates of cover were generally larger than ocular quadrat estimates. Ocular quadrat estimates are appropriate when assessment of richness is important, in areas with heterogeneous geomorphology and hydrology where fine‐scale measurements are most useful, and in areas where continuous sampling transects are impracticable. Line‐point intercept estimates are useful when minimum variation among observers is necessary, continuous transects are logical and practicable for the sampling area, woody cover does not present a logistical complication, and species richness is not a priority.</description><identifier>ISSN: 1535-1459</identifier><identifier>EISSN: 1535-1467</identifier><identifier>DOI: 10.1002/rra.3440</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Coefficient of variation ; data variability ; Deserts ; Ecosystems ; Environmental monitoring ; Estimates ; Geomorphology ; Grasslands ; Hydrology ; line‐point intercept ; long‐term monitoring ; Observers ; ocular quadrat estimates ; Plant cover ; Riparian vegetation ; River regulations ; Rivers ; Sampling ; Sampling methods ; Small mammals ; Species richness ; Tundra ; Variance analysis ; Vegetation ; Vegetation cover ; vegetation sampling methods</subject><ispartof>River research and applications, 2019-07, Vol.35 (6), p.759-767</ispartof><rights>Published 2019. This article is a U.S. Government work and is in the public domain in the USA</rights><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-a48467ad534baa62e4f260ddb90d707c8ff5fcc0a8c597a76f016f8cc80acaed3</citedby><cites>FETCH-LOGICAL-c2930-a48467ad534baa62e4f260ddb90d707c8ff5fcc0a8c597a76f016f8cc80acaed3</cites><orcidid>0000-0001-9991-8994 ; 0000-0001-7984-967X ; 0000-0003-1069-2154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frra.3440$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frra.3440$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Palmquist, Emily C.</creatorcontrib><creatorcontrib>Sterner, Sarah A.</creatorcontrib><creatorcontrib>Ralston, Barbara E.</creatorcontrib><title>A comparison of riparian vegetation sampling methods along a large, regulated river</title><title>River research and applications</title><description>Monitoring riparian vegetation cover and species richness is an important component of assessing change and understanding ecosystem processes. Vegetation sampling methods determined to be the best option in other ecosystems (e.g., desert grasslands and arctic tundra) may not be the best option in multilayered, species rich, heterogeneous riparian vegetation. This study examines the strengths and weaknesses of two common vegetation sampling methods, line‐point intercept and ocular quadrat estimates. Permutational analysis of variance analyses indicate that cover estimates among observers did not differ significantly for either line‐point intercept or ocular quadrat estimates. Line‐point intercept cover estimates resulted in lower coefficient of variation among observers than ocular quadrat estimates, but the ocular quadrat estimates recorded significantly more species. Line‐point estimates of cover were generally larger than ocular quadrat estimates. Ocular quadrat estimates are appropriate when assessment of richness is important, in areas with heterogeneous geomorphology and hydrology where fine‐scale measurements are most useful, and in areas where continuous sampling transects are impracticable. Line‐point intercept estimates are useful when minimum variation among observers is necessary, continuous transects are logical and practicable for the sampling area, woody cover does not present a logistical complication, and species richness is not a priority.</description><subject>Coefficient of variation</subject><subject>data variability</subject><subject>Deserts</subject><subject>Ecosystems</subject><subject>Environmental monitoring</subject><subject>Estimates</subject><subject>Geomorphology</subject><subject>Grasslands</subject><subject>Hydrology</subject><subject>line‐point intercept</subject><subject>long‐term monitoring</subject><subject>Observers</subject><subject>ocular quadrat estimates</subject><subject>Plant cover</subject><subject>Riparian vegetation</subject><subject>River regulations</subject><subject>Rivers</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Small mammals</subject><subject>Species richness</subject><subject>Tundra</subject><subject>Variance analysis</subject><subject>Vegetation</subject><subject>Vegetation cover</subject><subject>vegetation sampling methods</subject><issn>1535-1459</issn><issn>1535-1467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kFtLAzEQhYMoWKvgTwj44oOrs9lkL4-leIOCUPU5THNZt-xu1mRb6b83teKbTzNn-GbOcAi5TOE2BWB33uNtxjkckUkqMpGkPC-O_3pRnZKzENYAaVFW5YS8zqhy3YC-Ca6nzlLf7AX2dGtqM-LYxHHAbmibvqadGT-cDhRbFxXSFn1tbqg39abF0ei4vTX-nJxYbIO5-K1T8v5w_zZ_ShYvj8_z2SJRrMogQV7G31CLjK8Qc2a4ZTlovapAF1Co0lphlQIslagKLHILaW5LpUpAhUZnU3J1uDt497kxYZRrt_F9tJSMiYoJnoGI1PWBUt6F4I2Vg2869DuZgtxHJmNkch9ZRJMD-tW0ZvcvJ5fL2Q__DfKIbcs</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Palmquist, Emily C.</creator><creator>Sterner, Sarah A.</creator><creator>Ralston, Barbara E.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9991-8994</orcidid><orcidid>https://orcid.org/0000-0001-7984-967X</orcidid><orcidid>https://orcid.org/0000-0003-1069-2154</orcidid></search><sort><creationdate>201907</creationdate><title>A comparison of riparian vegetation sampling methods along a large, regulated river</title><author>Palmquist, Emily C. ; Sterner, Sarah A. ; Ralston, Barbara E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-a48467ad534baa62e4f260ddb90d707c8ff5fcc0a8c597a76f016f8cc80acaed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coefficient of variation</topic><topic>data variability</topic><topic>Deserts</topic><topic>Ecosystems</topic><topic>Environmental monitoring</topic><topic>Estimates</topic><topic>Geomorphology</topic><topic>Grasslands</topic><topic>Hydrology</topic><topic>line‐point intercept</topic><topic>long‐term monitoring</topic><topic>Observers</topic><topic>ocular quadrat estimates</topic><topic>Plant cover</topic><topic>Riparian vegetation</topic><topic>River regulations</topic><topic>Rivers</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Small mammals</topic><topic>Species richness</topic><topic>Tundra</topic><topic>Variance analysis</topic><topic>Vegetation</topic><topic>Vegetation cover</topic><topic>vegetation sampling methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palmquist, Emily C.</creatorcontrib><creatorcontrib>Sterner, Sarah A.</creatorcontrib><creatorcontrib>Ralston, Barbara E.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>River research and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palmquist, Emily C.</au><au>Sterner, Sarah A.</au><au>Ralston, Barbara E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of riparian vegetation sampling methods along a large, regulated river</atitle><jtitle>River research and applications</jtitle><date>2019-07</date><risdate>2019</risdate><volume>35</volume><issue>6</issue><spage>759</spage><epage>767</epage><pages>759-767</pages><issn>1535-1459</issn><eissn>1535-1467</eissn><abstract>Monitoring riparian vegetation cover and species richness is an important component of assessing change and understanding ecosystem processes. Vegetation sampling methods determined to be the best option in other ecosystems (e.g., desert grasslands and arctic tundra) may not be the best option in multilayered, species rich, heterogeneous riparian vegetation. This study examines the strengths and weaknesses of two common vegetation sampling methods, line‐point intercept and ocular quadrat estimates. Permutational analysis of variance analyses indicate that cover estimates among observers did not differ significantly for either line‐point intercept or ocular quadrat estimates. Line‐point intercept cover estimates resulted in lower coefficient of variation among observers than ocular quadrat estimates, but the ocular quadrat estimates recorded significantly more species. Line‐point estimates of cover were generally larger than ocular quadrat estimates. Ocular quadrat estimates are appropriate when assessment of richness is important, in areas with heterogeneous geomorphology and hydrology where fine‐scale measurements are most useful, and in areas where continuous sampling transects are impracticable. Line‐point intercept estimates are useful when minimum variation among observers is necessary, continuous transects are logical and practicable for the sampling area, woody cover does not present a logistical complication, and species richness is not a priority.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rra.3440</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9991-8994</orcidid><orcidid>https://orcid.org/0000-0001-7984-967X</orcidid><orcidid>https://orcid.org/0000-0003-1069-2154</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-1459 |
ispartof | River research and applications, 2019-07, Vol.35 (6), p.759-767 |
issn | 1535-1459 1535-1467 |
language | eng |
recordid | cdi_proquest_journals_2259254305 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Coefficient of variation data variability Deserts Ecosystems Environmental monitoring Estimates Geomorphology Grasslands Hydrology line‐point intercept long‐term monitoring Observers ocular quadrat estimates Plant cover Riparian vegetation River regulations Rivers Sampling Sampling methods Small mammals Species richness Tundra Variance analysis Vegetation Vegetation cover vegetation sampling methods |
title | A comparison of riparian vegetation sampling methods along a large, regulated river |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20riparian%20vegetation%20sampling%20methods%20along%20a%20large,%20regulated%20river&rft.jtitle=River%20research%20and%20applications&rft.au=Palmquist,%20Emily%20C.&rft.date=2019-07&rft.volume=35&rft.issue=6&rft.spage=759&rft.epage=767&rft.pages=759-767&rft.issn=1535-1459&rft.eissn=1535-1467&rft_id=info:doi/10.1002/rra.3440&rft_dat=%3Cproquest_cross%3E2259254305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259254305&rft_id=info:pmid/&rfr_iscdi=true |