Selective visual odometry for accurate AUV localization
In this paper we present a stereo visual odometry system developed for autonomous underwater vehicle localization tasks. The main idea is to make use of only highly reliable data in the estimation process, employing a robust keypoint tracking approach and an effective keyframe selection strategy, so...
Gespeichert in:
Veröffentlicht in: | Autonomous robots 2017, Vol.41 (1), p.133-143 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | 1 |
container_start_page | 133 |
container_title | Autonomous robots |
container_volume | 41 |
creator | Bellavia, Fabio Fanfani, Marco Colombo, Carlo |
description | In this paper we present a stereo visual odometry system developed for autonomous underwater vehicle localization tasks. The main idea is to make use of only highly reliable data in the estimation process, employing a robust keypoint tracking approach and an effective keyframe selection strategy, so that camera movements are estimated with high accuracy even for long paths. Furthermore, in order to limit the drift error, camera pose estimation is referred to the last keyframe, selected by analyzing the feature temporal flow. The proposed system was tested on the KITTI evaluation framework and on the New Tsukuba stereo dataset to assess its effectiveness on long tracks and different illumination conditions. Results of a live archaeological campaign in the Mediterranean Sea, on an AUV equipped with a stereo camera pair, show that our solution can effectively work in underwater environments. |
doi_str_mv | 10.1007/s10514-015-9541-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259043138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259043138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-61b84fa203c3edd284e7e0ff20864d73d3d81bbfa594c9df71ddaa5454fcc603</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMoWKs_wN2A6-i9eTSTZSm-QHBhdRvSPGTKtKnJTKH-eqeM4MrV3ZzzXTiEXCPcIoC6KwgSBQWUVEuBFE_IBKXiVEmmTskENNNUSs3PyUUpawDQCmBC1Ftog-uafaj2TeltWyWfNqHLhyqmXFnn-my7UM3fP6o2Ods237Zr0vaSnEXblnD1e6dk-XC_XDzRl9fH58X8hToudUdnuKpFtAy448F7VougAsTIoJ4Jr7jnvsbVKlqphdM-KvTeWimkiM7NgE_JzTi7y-mrD6Uz69Tn7fDRMCY1CI68HigcKZdTKTlEs8vNxuaDQTDHPGbMY4Y85pjH4OCw0SkDu_0M-W_5f-kHlQ9nrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259043138</pqid></control><display><type>article</type><title>Selective visual odometry for accurate AUV localization</title><source>SpringerLink Journals</source><creator>Bellavia, Fabio ; Fanfani, Marco ; Colombo, Carlo</creator><creatorcontrib>Bellavia, Fabio ; Fanfani, Marco ; Colombo, Carlo</creatorcontrib><description>In this paper we present a stereo visual odometry system developed for autonomous underwater vehicle localization tasks. The main idea is to make use of only highly reliable data in the estimation process, employing a robust keypoint tracking approach and an effective keyframe selection strategy, so that camera movements are estimated with high accuracy even for long paths. Furthermore, in order to limit the drift error, camera pose estimation is referred to the last keyframe, selected by analyzing the feature temporal flow. The proposed system was tested on the KITTI evaluation framework and on the New Tsukuba stereo dataset to assess its effectiveness on long tracks and different illumination conditions. Results of a live archaeological campaign in the Mediterranean Sea, on an AUV equipped with a stereo camera pair, show that our solution can effectively work in underwater environments.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-015-9541-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Archaeology ; Artificial Intelligence ; Autonomous underwater vehicles ; Computer Imaging ; Control ; Engineering ; Localization ; Mechatronics ; Odometers ; Pattern Recognition and Graphics ; Robotics ; Robotics and Automation ; Tracks (paths) ; Vision</subject><ispartof>Autonomous robots, 2017, Vol.41 (1), p.133-143</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Autonomous Robots is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-61b84fa203c3edd284e7e0ff20864d73d3d81bbfa594c9df71ddaa5454fcc603</citedby><cites>FETCH-LOGICAL-c359t-61b84fa203c3edd284e7e0ff20864d73d3d81bbfa594c9df71ddaa5454fcc603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10514-015-9541-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10514-015-9541-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bellavia, Fabio</creatorcontrib><creatorcontrib>Fanfani, Marco</creatorcontrib><creatorcontrib>Colombo, Carlo</creatorcontrib><title>Selective visual odometry for accurate AUV localization</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>In this paper we present a stereo visual odometry system developed for autonomous underwater vehicle localization tasks. The main idea is to make use of only highly reliable data in the estimation process, employing a robust keypoint tracking approach and an effective keyframe selection strategy, so that camera movements are estimated with high accuracy even for long paths. Furthermore, in order to limit the drift error, camera pose estimation is referred to the last keyframe, selected by analyzing the feature temporal flow. The proposed system was tested on the KITTI evaluation framework and on the New Tsukuba stereo dataset to assess its effectiveness on long tracks and different illumination conditions. Results of a live archaeological campaign in the Mediterranean Sea, on an AUV equipped with a stereo camera pair, show that our solution can effectively work in underwater environments.</description><subject>Archaeology</subject><subject>Artificial Intelligence</subject><subject>Autonomous underwater vehicles</subject><subject>Computer Imaging</subject><subject>Control</subject><subject>Engineering</subject><subject>Localization</subject><subject>Mechatronics</subject><subject>Odometers</subject><subject>Pattern Recognition and Graphics</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Tracks (paths)</subject><subject>Vision</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEURoMoWKs_wN2A6-i9eTSTZSm-QHBhdRvSPGTKtKnJTKH-eqeM4MrV3ZzzXTiEXCPcIoC6KwgSBQWUVEuBFE_IBKXiVEmmTskENNNUSs3PyUUpawDQCmBC1Ftog-uafaj2TeltWyWfNqHLhyqmXFnn-my7UM3fP6o2Ods237Zr0vaSnEXblnD1e6dk-XC_XDzRl9fH58X8hToudUdnuKpFtAy448F7VougAsTIoJ4Jr7jnvsbVKlqphdM-KvTeWimkiM7NgE_JzTi7y-mrD6Uz69Tn7fDRMCY1CI68HigcKZdTKTlEs8vNxuaDQTDHPGbMY4Y85pjH4OCw0SkDu_0M-W_5f-kHlQ9nrg</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Bellavia, Fabio</creator><creator>Fanfani, Marco</creator><creator>Colombo, Carlo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>2017</creationdate><title>Selective visual odometry for accurate AUV localization</title><author>Bellavia, Fabio ; Fanfani, Marco ; Colombo, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-61b84fa203c3edd284e7e0ff20864d73d3d81bbfa594c9df71ddaa5454fcc603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Archaeology</topic><topic>Artificial Intelligence</topic><topic>Autonomous underwater vehicles</topic><topic>Computer Imaging</topic><topic>Control</topic><topic>Engineering</topic><topic>Localization</topic><topic>Mechatronics</topic><topic>Odometers</topic><topic>Pattern Recognition and Graphics</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Tracks (paths)</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellavia, Fabio</creatorcontrib><creatorcontrib>Fanfani, Marco</creatorcontrib><creatorcontrib>Colombo, Carlo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellavia, Fabio</au><au>Fanfani, Marco</au><au>Colombo, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective visual odometry for accurate AUV localization</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2017</date><risdate>2017</risdate><volume>41</volume><issue>1</issue><spage>133</spage><epage>143</epage><pages>133-143</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>In this paper we present a stereo visual odometry system developed for autonomous underwater vehicle localization tasks. The main idea is to make use of only highly reliable data in the estimation process, employing a robust keypoint tracking approach and an effective keyframe selection strategy, so that camera movements are estimated with high accuracy even for long paths. Furthermore, in order to limit the drift error, camera pose estimation is referred to the last keyframe, selected by analyzing the feature temporal flow. The proposed system was tested on the KITTI evaluation framework and on the New Tsukuba stereo dataset to assess its effectiveness on long tracks and different illumination conditions. Results of a live archaeological campaign in the Mediterranean Sea, on an AUV equipped with a stereo camera pair, show that our solution can effectively work in underwater environments.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10514-015-9541-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5593 |
ispartof | Autonomous robots, 2017, Vol.41 (1), p.133-143 |
issn | 0929-5593 1573-7527 |
language | eng |
recordid | cdi_proquest_journals_2259043138 |
source | SpringerLink Journals |
subjects | Archaeology Artificial Intelligence Autonomous underwater vehicles Computer Imaging Control Engineering Localization Mechatronics Odometers Pattern Recognition and Graphics Robotics Robotics and Automation Tracks (paths) Vision |
title | Selective visual odometry for accurate AUV localization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20visual%20odometry%20for%20accurate%20AUV%20localization&rft.jtitle=Autonomous%20robots&rft.au=Bellavia,%20Fabio&rft.date=2017&rft.volume=41&rft.issue=1&rft.spage=133&rft.epage=143&rft.pages=133-143&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-015-9541-1&rft_dat=%3Cproquest_cross%3E2259043138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259043138&rft_id=info:pmid/&rfr_iscdi=true |