Real-time path planning for long-term information gathering with an aerial glider
Autonomous thermal soaring offers an opportunity to extend the flight duration of unmanned aerial vehicles (UAVs). In this work, we introduce the informative soaring problem, where a gliding UAV performs an information gathering mission while simultaneously replenishing energy from known thermal ene...
Gespeichert in:
Veröffentlicht in: | Autonomous robots 2016-08, Vol.40 (6), p.1017-1039 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1039 |
---|---|
container_issue | 6 |
container_start_page | 1017 |
container_title | Autonomous robots |
container_volume | 40 |
creator | Nguyen, Joseph L. Lawrance, Nicholas R. J. Fitch, Robert Sukkarieh, Salah |
description | Autonomous thermal soaring offers an opportunity to extend the flight duration of unmanned aerial vehicles (UAVs). In this work, we introduce the
informative soaring
problem, where a gliding UAV performs an information gathering mission while simultaneously replenishing energy from known thermal energy sources. We pose this problem in a way that combines convex optimisation with graph search and present four path planning algorithms with complementary characteristics. Using a target-search task as a motivating example, finite-horizon and Monte Carlo tree search methods are shown to be appropriate for situations with little prior knowledge, but suffer from either myopic planning or high computation cost in more complex scenarios. These issues are addressed by two novel tree search algorithms based on creating clusters that associate high uncertainty regions with nearby thermals. The cluster subproblems are solved independently to generate local plans, which are then linked together. Numerical simulations show that these methods find high-quality nonmyopic plans quickly. The more promising cluster-based method, which uses dynamic programming to compute a total ordering over clusters, is demonstrated in hardware tests on a UAV. Fifteen-minute plans are generated in less than four seconds, facilitating online replanning when simulated thermals are added or removed in-flight. |
doi_str_mv | 10.1007/s10514-015-9515-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259040999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259040999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-59b08e2b39b913b350bbad76c30067db66de314a25a68d781a0e87babbe053803</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9FJsmmaoyz-gwVR9Bwm22zt0qY16SJ-e1MqePIyw4Pfe8M8Qi45XHMAfZM4KL5iwBUzKg95RBZcacm0EvqYLMAIw5Qy8pScpbQHAKMBFuTl1WPLxqbzdMDxgw4thtCEmu76SNs-1Gz0saNNyLrDsekDrTPn48R8NdmBgWKW2NK6bSofz8nJDtvkL373krzf372tH9nm-eFpfbthW8mLkSnjoPTCSeMMl04qcA4rXWwlQKErVxSVl3yFQmFRVrrkCL7UDp3zoGQJckmu5twh9p8Hn0a77w8x5JNWCGVgBcaYTPGZ2sY-peh3dohNh_HbcrBTc3Zuzubm7NScldkjZk8apjd9_Ev-3_QDVBBwlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259040999</pqid></control><display><type>article</type><title>Real-time path planning for long-term information gathering with an aerial glider</title><source>Springer Online Journals Complete</source><creator>Nguyen, Joseph L. ; Lawrance, Nicholas R. J. ; Fitch, Robert ; Sukkarieh, Salah</creator><creatorcontrib>Nguyen, Joseph L. ; Lawrance, Nicholas R. J. ; Fitch, Robert ; Sukkarieh, Salah</creatorcontrib><description>Autonomous thermal soaring offers an opportunity to extend the flight duration of unmanned aerial vehicles (UAVs). In this work, we introduce the
informative soaring
problem, where a gliding UAV performs an information gathering mission while simultaneously replenishing energy from known thermal energy sources. We pose this problem in a way that combines convex optimisation with graph search and present four path planning algorithms with complementary characteristics. Using a target-search task as a motivating example, finite-horizon and Monte Carlo tree search methods are shown to be appropriate for situations with little prior knowledge, but suffer from either myopic planning or high computation cost in more complex scenarios. These issues are addressed by two novel tree search algorithms based on creating clusters that associate high uncertainty regions with nearby thermals. The cluster subproblems are solved independently to generate local plans, which are then linked together. Numerical simulations show that these methods find high-quality nonmyopic plans quickly. The more promising cluster-based method, which uses dynamic programming to compute a total ordering over clusters, is demonstrated in hardware tests on a UAV. Fifteen-minute plans are generated in less than four seconds, facilitating online replanning when simulated thermals are added or removed in-flight.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-015-9515-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Clusters ; Computer Imaging ; Computer simulation ; Control ; Dynamic programming ; Engineering ; Gliders ; Gliding ; Mechatronics ; Monte Carlo simulation ; Optimization ; Path planning ; Pattern Recognition and Graphics ; Planning ; Robotics ; Robotics and Automation ; Search algorithms ; Soaring ; Thermal energy ; Unmanned aerial vehicles ; Vision</subject><ispartof>Autonomous robots, 2016-08, Vol.40 (6), p.1017-1039</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Autonomous Robots is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-59b08e2b39b913b350bbad76c30067db66de314a25a68d781a0e87babbe053803</citedby><cites>FETCH-LOGICAL-c316t-59b08e2b39b913b350bbad76c30067db66de314a25a68d781a0e87babbe053803</cites><orcidid>0000-0001-7095-9979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10514-015-9515-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10514-015-9515-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nguyen, Joseph L.</creatorcontrib><creatorcontrib>Lawrance, Nicholas R. J.</creatorcontrib><creatorcontrib>Fitch, Robert</creatorcontrib><creatorcontrib>Sukkarieh, Salah</creatorcontrib><title>Real-time path planning for long-term information gathering with an aerial glider</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>Autonomous thermal soaring offers an opportunity to extend the flight duration of unmanned aerial vehicles (UAVs). In this work, we introduce the
informative soaring
problem, where a gliding UAV performs an information gathering mission while simultaneously replenishing energy from known thermal energy sources. We pose this problem in a way that combines convex optimisation with graph search and present four path planning algorithms with complementary characteristics. Using a target-search task as a motivating example, finite-horizon and Monte Carlo tree search methods are shown to be appropriate for situations with little prior knowledge, but suffer from either myopic planning or high computation cost in more complex scenarios. These issues are addressed by two novel tree search algorithms based on creating clusters that associate high uncertainty regions with nearby thermals. The cluster subproblems are solved independently to generate local plans, which are then linked together. Numerical simulations show that these methods find high-quality nonmyopic plans quickly. The more promising cluster-based method, which uses dynamic programming to compute a total ordering over clusters, is demonstrated in hardware tests on a UAV. Fifteen-minute plans are generated in less than four seconds, facilitating online replanning when simulated thermals are added or removed in-flight.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clusters</subject><subject>Computer Imaging</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Dynamic programming</subject><subject>Engineering</subject><subject>Gliders</subject><subject>Gliding</subject><subject>Mechatronics</subject><subject>Monte Carlo simulation</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Pattern Recognition and Graphics</subject><subject>Planning</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Search algorithms</subject><subject>Soaring</subject><subject>Thermal energy</subject><subject>Unmanned aerial vehicles</subject><subject>Vision</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9FJsmmaoyz-gwVR9Bwm22zt0qY16SJ-e1MqePIyw4Pfe8M8Qi45XHMAfZM4KL5iwBUzKg95RBZcacm0EvqYLMAIw5Qy8pScpbQHAKMBFuTl1WPLxqbzdMDxgw4thtCEmu76SNs-1Gz0saNNyLrDsekDrTPn48R8NdmBgWKW2NK6bSofz8nJDtvkL373krzf372tH9nm-eFpfbthW8mLkSnjoPTCSeMMl04qcA4rXWwlQKErVxSVl3yFQmFRVrrkCL7UDp3zoGQJckmu5twh9p8Hn0a77w8x5JNWCGVgBcaYTPGZ2sY-peh3dohNh_HbcrBTc3Zuzubm7NScldkjZk8apjd9_Ev-3_QDVBBwlw</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Nguyen, Joseph L.</creator><creator>Lawrance, Nicholas R. J.</creator><creator>Fitch, Robert</creator><creator>Sukkarieh, Salah</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-7095-9979</orcidid></search><sort><creationdate>20160801</creationdate><title>Real-time path planning for long-term information gathering with an aerial glider</title><author>Nguyen, Joseph L. ; Lawrance, Nicholas R. J. ; Fitch, Robert ; Sukkarieh, Salah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-59b08e2b39b913b350bbad76c30067db66de314a25a68d781a0e87babbe053803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clusters</topic><topic>Computer Imaging</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Dynamic programming</topic><topic>Engineering</topic><topic>Gliders</topic><topic>Gliding</topic><topic>Mechatronics</topic><topic>Monte Carlo simulation</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Pattern Recognition and Graphics</topic><topic>Planning</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Search algorithms</topic><topic>Soaring</topic><topic>Thermal energy</topic><topic>Unmanned aerial vehicles</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Joseph L.</creatorcontrib><creatorcontrib>Lawrance, Nicholas R. J.</creatorcontrib><creatorcontrib>Fitch, Robert</creatorcontrib><creatorcontrib>Sukkarieh, Salah</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Joseph L.</au><au>Lawrance, Nicholas R. J.</au><au>Fitch, Robert</au><au>Sukkarieh, Salah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time path planning for long-term information gathering with an aerial glider</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>40</volume><issue>6</issue><spage>1017</spage><epage>1039</epage><pages>1017-1039</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>Autonomous thermal soaring offers an opportunity to extend the flight duration of unmanned aerial vehicles (UAVs). In this work, we introduce the
informative soaring
problem, where a gliding UAV performs an information gathering mission while simultaneously replenishing energy from known thermal energy sources. We pose this problem in a way that combines convex optimisation with graph search and present four path planning algorithms with complementary characteristics. Using a target-search task as a motivating example, finite-horizon and Monte Carlo tree search methods are shown to be appropriate for situations with little prior knowledge, but suffer from either myopic planning or high computation cost in more complex scenarios. These issues are addressed by two novel tree search algorithms based on creating clusters that associate high uncertainty regions with nearby thermals. The cluster subproblems are solved independently to generate local plans, which are then linked together. Numerical simulations show that these methods find high-quality nonmyopic plans quickly. The more promising cluster-based method, which uses dynamic programming to compute a total ordering over clusters, is demonstrated in hardware tests on a UAV. Fifteen-minute plans are generated in less than four seconds, facilitating online replanning when simulated thermals are added or removed in-flight.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10514-015-9515-3</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7095-9979</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5593 |
ispartof | Autonomous robots, 2016-08, Vol.40 (6), p.1017-1039 |
issn | 0929-5593 1573-7527 |
language | eng |
recordid | cdi_proquest_journals_2259040999 |
source | Springer Online Journals Complete |
subjects | Algorithms Artificial Intelligence Clusters Computer Imaging Computer simulation Control Dynamic programming Engineering Gliders Gliding Mechatronics Monte Carlo simulation Optimization Path planning Pattern Recognition and Graphics Planning Robotics Robotics and Automation Search algorithms Soaring Thermal energy Unmanned aerial vehicles Vision |
title | Real-time path planning for long-term information gathering with an aerial glider |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20path%20planning%20for%20long-term%20information%20gathering%20with%20an%20aerial%20glider&rft.jtitle=Autonomous%20robots&rft.au=Nguyen,%20Joseph%20L.&rft.date=2016-08-01&rft.volume=40&rft.issue=6&rft.spage=1017&rft.epage=1039&rft.pages=1017-1039&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-015-9515-3&rft_dat=%3Cproquest_cross%3E2259040999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259040999&rft_id=info:pmid/&rfr_iscdi=true |