Real-time path planning for long-term information gathering with an aerial glider

Autonomous thermal soaring offers an opportunity to extend the flight duration of unmanned aerial vehicles (UAVs). In this work, we introduce the informative soaring problem, where a gliding UAV performs an information gathering mission while simultaneously replenishing energy from known thermal ene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autonomous robots 2016-08, Vol.40 (6), p.1017-1039
Hauptverfasser: Nguyen, Joseph L., Lawrance, Nicholas R. J., Fitch, Robert, Sukkarieh, Salah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1039
container_issue 6
container_start_page 1017
container_title Autonomous robots
container_volume 40
creator Nguyen, Joseph L.
Lawrance, Nicholas R. J.
Fitch, Robert
Sukkarieh, Salah
description Autonomous thermal soaring offers an opportunity to extend the flight duration of unmanned aerial vehicles (UAVs). In this work, we introduce the informative soaring problem, where a gliding UAV performs an information gathering mission while simultaneously replenishing energy from known thermal energy sources. We pose this problem in a way that combines convex optimisation with graph search and present four path planning algorithms with complementary characteristics. Using a target-search task as a motivating example, finite-horizon and Monte Carlo tree search methods are shown to be appropriate for situations with little prior knowledge, but suffer from either myopic planning or high computation cost in more complex scenarios. These issues are addressed by two novel tree search algorithms based on creating clusters that associate high uncertainty regions with nearby thermals. The cluster subproblems are solved independently to generate local plans, which are then linked together. Numerical simulations show that these methods find high-quality nonmyopic plans quickly. The more promising cluster-based method, which uses dynamic programming to compute a total ordering over clusters, is demonstrated in hardware tests on a UAV. Fifteen-minute plans are generated in less than four seconds, facilitating online replanning when simulated thermals are added or removed in-flight.
doi_str_mv 10.1007/s10514-015-9515-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259040999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259040999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-59b08e2b39b913b350bbad76c30067db66de314a25a68d781a0e87babbe053803</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9FJsmmaoyz-gwVR9Bwm22zt0qY16SJ-e1MqePIyw4Pfe8M8Qi45XHMAfZM4KL5iwBUzKg95RBZcacm0EvqYLMAIw5Qy8pScpbQHAKMBFuTl1WPLxqbzdMDxgw4thtCEmu76SNs-1Gz0saNNyLrDsekDrTPn48R8NdmBgWKW2NK6bSofz8nJDtvkL373krzf372tH9nm-eFpfbthW8mLkSnjoPTCSeMMl04qcA4rXWwlQKErVxSVl3yFQmFRVrrkCL7UDp3zoGQJckmu5twh9p8Hn0a77w8x5JNWCGVgBcaYTPGZ2sY-peh3dohNh_HbcrBTc3Zuzubm7NScldkjZk8apjd9_Ev-3_QDVBBwlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259040999</pqid></control><display><type>article</type><title>Real-time path planning for long-term information gathering with an aerial glider</title><source>Springer Online Journals Complete</source><creator>Nguyen, Joseph L. ; Lawrance, Nicholas R. J. ; Fitch, Robert ; Sukkarieh, Salah</creator><creatorcontrib>Nguyen, Joseph L. ; Lawrance, Nicholas R. J. ; Fitch, Robert ; Sukkarieh, Salah</creatorcontrib><description>Autonomous thermal soaring offers an opportunity to extend the flight duration of unmanned aerial vehicles (UAVs). In this work, we introduce the informative soaring problem, where a gliding UAV performs an information gathering mission while simultaneously replenishing energy from known thermal energy sources. We pose this problem in a way that combines convex optimisation with graph search and present four path planning algorithms with complementary characteristics. Using a target-search task as a motivating example, finite-horizon and Monte Carlo tree search methods are shown to be appropriate for situations with little prior knowledge, but suffer from either myopic planning or high computation cost in more complex scenarios. These issues are addressed by two novel tree search algorithms based on creating clusters that associate high uncertainty regions with nearby thermals. The cluster subproblems are solved independently to generate local plans, which are then linked together. Numerical simulations show that these methods find high-quality nonmyopic plans quickly. The more promising cluster-based method, which uses dynamic programming to compute a total ordering over clusters, is demonstrated in hardware tests on a UAV. Fifteen-minute plans are generated in less than four seconds, facilitating online replanning when simulated thermals are added or removed in-flight.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-015-9515-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Clusters ; Computer Imaging ; Computer simulation ; Control ; Dynamic programming ; Engineering ; Gliders ; Gliding ; Mechatronics ; Monte Carlo simulation ; Optimization ; Path planning ; Pattern Recognition and Graphics ; Planning ; Robotics ; Robotics and Automation ; Search algorithms ; Soaring ; Thermal energy ; Unmanned aerial vehicles ; Vision</subject><ispartof>Autonomous robots, 2016-08, Vol.40 (6), p.1017-1039</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Autonomous Robots is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-59b08e2b39b913b350bbad76c30067db66de314a25a68d781a0e87babbe053803</citedby><cites>FETCH-LOGICAL-c316t-59b08e2b39b913b350bbad76c30067db66de314a25a68d781a0e87babbe053803</cites><orcidid>0000-0001-7095-9979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10514-015-9515-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10514-015-9515-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nguyen, Joseph L.</creatorcontrib><creatorcontrib>Lawrance, Nicholas R. J.</creatorcontrib><creatorcontrib>Fitch, Robert</creatorcontrib><creatorcontrib>Sukkarieh, Salah</creatorcontrib><title>Real-time path planning for long-term information gathering with an aerial glider</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>Autonomous thermal soaring offers an opportunity to extend the flight duration of unmanned aerial vehicles (UAVs). In this work, we introduce the informative soaring problem, where a gliding UAV performs an information gathering mission while simultaneously replenishing energy from known thermal energy sources. We pose this problem in a way that combines convex optimisation with graph search and present four path planning algorithms with complementary characteristics. Using a target-search task as a motivating example, finite-horizon and Monte Carlo tree search methods are shown to be appropriate for situations with little prior knowledge, but suffer from either myopic planning or high computation cost in more complex scenarios. These issues are addressed by two novel tree search algorithms based on creating clusters that associate high uncertainty regions with nearby thermals. The cluster subproblems are solved independently to generate local plans, which are then linked together. Numerical simulations show that these methods find high-quality nonmyopic plans quickly. The more promising cluster-based method, which uses dynamic programming to compute a total ordering over clusters, is demonstrated in hardware tests on a UAV. Fifteen-minute plans are generated in less than four seconds, facilitating online replanning when simulated thermals are added or removed in-flight.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clusters</subject><subject>Computer Imaging</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Dynamic programming</subject><subject>Engineering</subject><subject>Gliders</subject><subject>Gliding</subject><subject>Mechatronics</subject><subject>Monte Carlo simulation</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Pattern Recognition and Graphics</subject><subject>Planning</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Search algorithms</subject><subject>Soaring</subject><subject>Thermal energy</subject><subject>Unmanned aerial vehicles</subject><subject>Vision</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9FJsmmaoyz-gwVR9Bwm22zt0qY16SJ-e1MqePIyw4Pfe8M8Qi45XHMAfZM4KL5iwBUzKg95RBZcacm0EvqYLMAIw5Qy8pScpbQHAKMBFuTl1WPLxqbzdMDxgw4thtCEmu76SNs-1Gz0saNNyLrDsekDrTPn48R8NdmBgWKW2NK6bSofz8nJDtvkL373krzf372tH9nm-eFpfbthW8mLkSnjoPTCSeMMl04qcA4rXWwlQKErVxSVl3yFQmFRVrrkCL7UDp3zoGQJckmu5twh9p8Hn0a77w8x5JNWCGVgBcaYTPGZ2sY-peh3dohNh_HbcrBTc3Zuzubm7NScldkjZk8apjd9_Ev-3_QDVBBwlw</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Nguyen, Joseph L.</creator><creator>Lawrance, Nicholas R. J.</creator><creator>Fitch, Robert</creator><creator>Sukkarieh, Salah</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-7095-9979</orcidid></search><sort><creationdate>20160801</creationdate><title>Real-time path planning for long-term information gathering with an aerial glider</title><author>Nguyen, Joseph L. ; Lawrance, Nicholas R. J. ; Fitch, Robert ; Sukkarieh, Salah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-59b08e2b39b913b350bbad76c30067db66de314a25a68d781a0e87babbe053803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clusters</topic><topic>Computer Imaging</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Dynamic programming</topic><topic>Engineering</topic><topic>Gliders</topic><topic>Gliding</topic><topic>Mechatronics</topic><topic>Monte Carlo simulation</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Pattern Recognition and Graphics</topic><topic>Planning</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Search algorithms</topic><topic>Soaring</topic><topic>Thermal energy</topic><topic>Unmanned aerial vehicles</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Joseph L.</creatorcontrib><creatorcontrib>Lawrance, Nicholas R. J.</creatorcontrib><creatorcontrib>Fitch, Robert</creatorcontrib><creatorcontrib>Sukkarieh, Salah</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Joseph L.</au><au>Lawrance, Nicholas R. J.</au><au>Fitch, Robert</au><au>Sukkarieh, Salah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time path planning for long-term information gathering with an aerial glider</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>40</volume><issue>6</issue><spage>1017</spage><epage>1039</epage><pages>1017-1039</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>Autonomous thermal soaring offers an opportunity to extend the flight duration of unmanned aerial vehicles (UAVs). In this work, we introduce the informative soaring problem, where a gliding UAV performs an information gathering mission while simultaneously replenishing energy from known thermal energy sources. We pose this problem in a way that combines convex optimisation with graph search and present four path planning algorithms with complementary characteristics. Using a target-search task as a motivating example, finite-horizon and Monte Carlo tree search methods are shown to be appropriate for situations with little prior knowledge, but suffer from either myopic planning or high computation cost in more complex scenarios. These issues are addressed by two novel tree search algorithms based on creating clusters that associate high uncertainty regions with nearby thermals. The cluster subproblems are solved independently to generate local plans, which are then linked together. Numerical simulations show that these methods find high-quality nonmyopic plans quickly. The more promising cluster-based method, which uses dynamic programming to compute a total ordering over clusters, is demonstrated in hardware tests on a UAV. Fifteen-minute plans are generated in less than four seconds, facilitating online replanning when simulated thermals are added or removed in-flight.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10514-015-9515-3</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7095-9979</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0929-5593
ispartof Autonomous robots, 2016-08, Vol.40 (6), p.1017-1039
issn 0929-5593
1573-7527
language eng
recordid cdi_proquest_journals_2259040999
source Springer Online Journals Complete
subjects Algorithms
Artificial Intelligence
Clusters
Computer Imaging
Computer simulation
Control
Dynamic programming
Engineering
Gliders
Gliding
Mechatronics
Monte Carlo simulation
Optimization
Path planning
Pattern Recognition and Graphics
Planning
Robotics
Robotics and Automation
Search algorithms
Soaring
Thermal energy
Unmanned aerial vehicles
Vision
title Real-time path planning for long-term information gathering with an aerial glider
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20path%20planning%20for%20long-term%20information%20gathering%20with%20an%20aerial%20glider&rft.jtitle=Autonomous%20robots&rft.au=Nguyen,%20Joseph%20L.&rft.date=2016-08-01&rft.volume=40&rft.issue=6&rft.spage=1017&rft.epage=1039&rft.pages=1017-1039&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-015-9515-3&rft_dat=%3Cproquest_cross%3E2259040999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259040999&rft_id=info:pmid/&rfr_iscdi=true