Learning motions from demonstrations and rewards with time-invariant dynamical systems based policies

An important challenge when using reinforcement learning for learning motions in robotics is the choice of parameterization for the policy. We use Gaussian Mixture Regression to extract a parameterization with relevant non-linear features from a set of demonstrations of a motion following the paradi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autonomous robots 2018, Vol.42 (1), p.45-64
Hauptverfasser: Rey, Joel, Kronander, Klas, Farshidian, Farbod, Buchli, Jonas, Billard, Aude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!