Fischer–Tropsch Synthesis: Deactivation as a Function of Potassium Promoter Loading for Precipitated Iron Catalyst
The effect of potassium promoter loading (0, 0.5, 1.0 and 2.0 atomic ratio) on the performance of precipitated iron catalysts was investigated during Fischer–Tropsch synthesis using a continuously stirred tank reactor. Characterization by temperature-programmed reduction with CO, Mössbauer effect sp...
Gespeichert in:
Veröffentlicht in: | Catalysis letters 2014-10, Vol.144 (10), p.1704-1716 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1716 |
---|---|
container_issue | 10 |
container_start_page | 1704 |
container_title | Catalysis letters |
container_volume | 144 |
creator | Pendyala, Venkat Ramana Rao Graham, Uschi M. Jacobs, Gary Hamdeh, Hussein H. Davis, Burtron H. |
description | The effect of potassium promoter loading (0, 0.5, 1.0 and 2.0 atomic ratio) on the performance of precipitated iron catalysts was investigated during Fischer–Tropsch synthesis using a continuously stirred tank reactor. Characterization by temperature-programmed reduction with CO, Mössbauer effect spectroscopy, and transmission/scanning transmission electron microscopy were used to study the effect of potassium promoter interactions on the carburization, phase transformation and carbon layer formation behavior of the catalysts. Under similar reaction conditions, all four catalysts exhibited similar initial CO conversions (~85 %), whereas stability was found to increase with potassium loading up to 0.5 % (atomic ratio related to the iron), and further increases in potassium led to decreased activity. Unpromoted and excessively K loaded (2.0K/100Fe) catalysts exhibited similar deactivation trends with time and followed essentially similar conversion levels with time-on-stream. The selectivity of various potassium promoted catalysts was found to increase the average molecular weight of hydrocarbon products with increasing potassium loading. The deactivation rate was related to carbon deposition which could embed the iron carbide particles. If not enough K is present, Fe carbides tend to oxidize with TOS; with excessive K-loading, carbon deposition/site blocking become problematic.
Graphical Abstract |
doi_str_mv | 10.1007/s10562-014-1336-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2258925524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A383459081</galeid><sourcerecordid>A383459081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-feb26e9ec1a36b51d792bfb50a533b5b6b166d17ac9ad9a1d22c87af4a33efd3</originalsourceid><addsrcrecordid>eNqNks9uEzEQxlcIJErhAbhZQhw4bPGf9XrNrUoJRIpERXPozZr12qmrZB08XkR64h14Q54El1RADwjkg2fGv--zNPqq6jmjJ4xS9RoZlS2vKWtqJkRb3zyojphUvO6UvnxYaspYLRS_fFw9QbymlGrF9FGV5wHtlUvfv35bpbgrNbnYj_nKYcA35MyBzeEz5BBHAkiAzKfR_uyiJ-cxA2KYtuQ8xW3MLpFlhCGMa-JjKkNnwy5kyG4gi1Q0M8iw2WN-Wj3ysEH37O4-rlbzt6vZ-3r54d1idrqsrdQ61971vHXaWQai7SUblOa97yUFKUQv-7ZnbTswBVbDoIENnNtOgW9ACOcHcVy9ONjuUvw0OczmOk5pLD8azmWnuZS8KdTJgVrDxpkw-pgT2HIGtw02js6HMj9tRKOY4pT-r0B0opGadqwIXt0TFCa7L3kNE6JZXHy8b_4v9k9fdmBtiojJebNLYQtpbxg1t6kwh1SYkgpzmwpzUzQv73YCaGHjE4w24C8h77qm4VQXjh84LE_j2qXfu_u7-Q-MoMhx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258925524</pqid></control><display><type>article</type><title>Fischer–Tropsch Synthesis: Deactivation as a Function of Potassium Promoter Loading for Precipitated Iron Catalyst</title><source>SpringerNature Journals</source><creator>Pendyala, Venkat Ramana Rao ; Graham, Uschi M. ; Jacobs, Gary ; Hamdeh, Hussein H. ; Davis, Burtron H.</creator><creatorcontrib>Pendyala, Venkat Ramana Rao ; Graham, Uschi M. ; Jacobs, Gary ; Hamdeh, Hussein H. ; Davis, Burtron H.</creatorcontrib><description>The effect of potassium promoter loading (0, 0.5, 1.0 and 2.0 atomic ratio) on the performance of precipitated iron catalysts was investigated during Fischer–Tropsch synthesis using a continuously stirred tank reactor. Characterization by temperature-programmed reduction with CO, Mössbauer effect spectroscopy, and transmission/scanning transmission electron microscopy were used to study the effect of potassium promoter interactions on the carburization, phase transformation and carbon layer formation behavior of the catalysts. Under similar reaction conditions, all four catalysts exhibited similar initial CO conversions (~85 %), whereas stability was found to increase with potassium loading up to 0.5 % (atomic ratio related to the iron), and further increases in potassium led to decreased activity. Unpromoted and excessively K loaded (2.0K/100Fe) catalysts exhibited similar deactivation trends with time and followed essentially similar conversion levels with time-on-stream. The selectivity of various potassium promoted catalysts was found to increase the average molecular weight of hydrocarbon products with increasing potassium loading. The deactivation rate was related to carbon deposition which could embed the iron carbide particles. If not enough K is present, Fe carbides tend to oxidize with TOS; with excessive K-loading, carbon deposition/site blocking become problematic.
Graphical Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-014-1336-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon ; Carburization (corrosion) ; Carburizing ; Catalysis ; Catalysts ; Chemistry ; Chemistry and Materials Science ; Continuously stirred tank reactors ; Deactivation ; Deposition ; Exact sciences and technology ; Fischer-Tropsch process ; General and physical chemistry ; Industrial Chemistry/Chemical Engineering ; Iron carbides ; Mossbauer spectroscopy ; Organometallic Chemistry ; Phase transitions ; Physical Chemistry ; Potassium ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Selectivity ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Transmission electron microscopy</subject><ispartof>Catalysis letters, 2014-10, Vol.144 (10), p.1704-1716</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Catalysis Letters is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-feb26e9ec1a36b51d792bfb50a533b5b6b166d17ac9ad9a1d22c87af4a33efd3</citedby><cites>FETCH-LOGICAL-c599t-feb26e9ec1a36b51d792bfb50a533b5b6b166d17ac9ad9a1d22c87af4a33efd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-014-1336-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-014-1336-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28844209$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pendyala, Venkat Ramana Rao</creatorcontrib><creatorcontrib>Graham, Uschi M.</creatorcontrib><creatorcontrib>Jacobs, Gary</creatorcontrib><creatorcontrib>Hamdeh, Hussein H.</creatorcontrib><creatorcontrib>Davis, Burtron H.</creatorcontrib><title>Fischer–Tropsch Synthesis: Deactivation as a Function of Potassium Promoter Loading for Precipitated Iron Catalyst</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>The effect of potassium promoter loading (0, 0.5, 1.0 and 2.0 atomic ratio) on the performance of precipitated iron catalysts was investigated during Fischer–Tropsch synthesis using a continuously stirred tank reactor. Characterization by temperature-programmed reduction with CO, Mössbauer effect spectroscopy, and transmission/scanning transmission electron microscopy were used to study the effect of potassium promoter interactions on the carburization, phase transformation and carbon layer formation behavior of the catalysts. Under similar reaction conditions, all four catalysts exhibited similar initial CO conversions (~85 %), whereas stability was found to increase with potassium loading up to 0.5 % (atomic ratio related to the iron), and further increases in potassium led to decreased activity. Unpromoted and excessively K loaded (2.0K/100Fe) catalysts exhibited similar deactivation trends with time and followed essentially similar conversion levels with time-on-stream. The selectivity of various potassium promoted catalysts was found to increase the average molecular weight of hydrocarbon products with increasing potassium loading. The deactivation rate was related to carbon deposition which could embed the iron carbide particles. If not enough K is present, Fe carbides tend to oxidize with TOS; with excessive K-loading, carbon deposition/site blocking become problematic.
Graphical Abstract</description><subject>Carbon</subject><subject>Carburization (corrosion)</subject><subject>Carburizing</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Continuously stirred tank reactors</subject><subject>Deactivation</subject><subject>Deposition</subject><subject>Exact sciences and technology</subject><subject>Fischer-Tropsch process</subject><subject>General and physical chemistry</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Iron carbides</subject><subject>Mossbauer spectroscopy</subject><subject>Organometallic Chemistry</subject><subject>Phase transitions</subject><subject>Physical Chemistry</subject><subject>Potassium</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Selectivity</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Transmission electron microscopy</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNks9uEzEQxlcIJErhAbhZQhw4bPGf9XrNrUoJRIpERXPozZr12qmrZB08XkR64h14Q54El1RADwjkg2fGv--zNPqq6jmjJ4xS9RoZlS2vKWtqJkRb3zyojphUvO6UvnxYaspYLRS_fFw9QbymlGrF9FGV5wHtlUvfv35bpbgrNbnYj_nKYcA35MyBzeEz5BBHAkiAzKfR_uyiJ-cxA2KYtuQ8xW3MLpFlhCGMa-JjKkNnwy5kyG4gi1Q0M8iw2WN-Wj3ysEH37O4-rlbzt6vZ-3r54d1idrqsrdQ61971vHXaWQai7SUblOa97yUFKUQv-7ZnbTswBVbDoIENnNtOgW9ACOcHcVy9ONjuUvw0OczmOk5pLD8azmWnuZS8KdTJgVrDxpkw-pgT2HIGtw02js6HMj9tRKOY4pT-r0B0opGadqwIXt0TFCa7L3kNE6JZXHy8b_4v9k9fdmBtiojJebNLYQtpbxg1t6kwh1SYkgpzmwpzUzQv73YCaGHjE4w24C8h77qm4VQXjh84LE_j2qXfu_u7-Q-MoMhx</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Pendyala, Venkat Ramana Rao</creator><creator>Graham, Uschi M.</creator><creator>Jacobs, Gary</creator><creator>Hamdeh, Hussein H.</creator><creator>Davis, Burtron H.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20141001</creationdate><title>Fischer–Tropsch Synthesis: Deactivation as a Function of Potassium Promoter Loading for Precipitated Iron Catalyst</title><author>Pendyala, Venkat Ramana Rao ; Graham, Uschi M. ; Jacobs, Gary ; Hamdeh, Hussein H. ; Davis, Burtron H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-feb26e9ec1a36b51d792bfb50a533b5b6b166d17ac9ad9a1d22c87af4a33efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbon</topic><topic>Carburization (corrosion)</topic><topic>Carburizing</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Continuously stirred tank reactors</topic><topic>Deactivation</topic><topic>Deposition</topic><topic>Exact sciences and technology</topic><topic>Fischer-Tropsch process</topic><topic>General and physical chemistry</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Iron carbides</topic><topic>Mossbauer spectroscopy</topic><topic>Organometallic Chemistry</topic><topic>Phase transitions</topic><topic>Physical Chemistry</topic><topic>Potassium</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Selectivity</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pendyala, Venkat Ramana Rao</creatorcontrib><creatorcontrib>Graham, Uschi M.</creatorcontrib><creatorcontrib>Jacobs, Gary</creatorcontrib><creatorcontrib>Hamdeh, Hussein H.</creatorcontrib><creatorcontrib>Davis, Burtron H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pendyala, Venkat Ramana Rao</au><au>Graham, Uschi M.</au><au>Jacobs, Gary</au><au>Hamdeh, Hussein H.</au><au>Davis, Burtron H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fischer–Tropsch Synthesis: Deactivation as a Function of Potassium Promoter Loading for Precipitated Iron Catalyst</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>144</volume><issue>10</issue><spage>1704</spage><epage>1716</epage><pages>1704-1716</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>The effect of potassium promoter loading (0, 0.5, 1.0 and 2.0 atomic ratio) on the performance of precipitated iron catalysts was investigated during Fischer–Tropsch synthesis using a continuously stirred tank reactor. Characterization by temperature-programmed reduction with CO, Mössbauer effect spectroscopy, and transmission/scanning transmission electron microscopy were used to study the effect of potassium promoter interactions on the carburization, phase transformation and carbon layer formation behavior of the catalysts. Under similar reaction conditions, all four catalysts exhibited similar initial CO conversions (~85 %), whereas stability was found to increase with potassium loading up to 0.5 % (atomic ratio related to the iron), and further increases in potassium led to decreased activity. Unpromoted and excessively K loaded (2.0K/100Fe) catalysts exhibited similar deactivation trends with time and followed essentially similar conversion levels with time-on-stream. The selectivity of various potassium promoted catalysts was found to increase the average molecular weight of hydrocarbon products with increasing potassium loading. The deactivation rate was related to carbon deposition which could embed the iron carbide particles. If not enough K is present, Fe carbides tend to oxidize with TOS; with excessive K-loading, carbon deposition/site blocking become problematic.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-014-1336-z</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1011-372X |
ispartof | Catalysis letters, 2014-10, Vol.144 (10), p.1704-1716 |
issn | 1011-372X 1572-879X |
language | eng |
recordid | cdi_proquest_journals_2258925524 |
source | SpringerNature Journals |
subjects | Carbon Carburization (corrosion) Carburizing Catalysis Catalysts Chemistry Chemistry and Materials Science Continuously stirred tank reactors Deactivation Deposition Exact sciences and technology Fischer-Tropsch process General and physical chemistry Industrial Chemistry/Chemical Engineering Iron carbides Mossbauer spectroscopy Organometallic Chemistry Phase transitions Physical Chemistry Potassium Scanning electron microscopy Scanning transmission electron microscopy Selectivity Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Transmission electron microscopy |
title | Fischer–Tropsch Synthesis: Deactivation as a Function of Potassium Promoter Loading for Precipitated Iron Catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fischer%E2%80%93Tropsch%20Synthesis:%20Deactivation%20as%20a%20Function%20of%20Potassium%20Promoter%20Loading%20for%20Precipitated%20Iron%20Catalyst&rft.jtitle=Catalysis%20letters&rft.au=Pendyala,%20Venkat%20Ramana%20Rao&rft.date=2014-10-01&rft.volume=144&rft.issue=10&rft.spage=1704&rft.epage=1716&rft.pages=1704-1716&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-014-1336-z&rft_dat=%3Cgale_proqu%3EA383459081%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258925524&rft_id=info:pmid/&rft_galeid=A383459081&rfr_iscdi=true |