Fischer–Tropsch Synthesis: Deactivation as a Function of Potassium Promoter Loading for Precipitated Iron Catalyst

The effect of potassium promoter loading (0, 0.5, 1.0 and 2.0 atomic ratio) on the performance of precipitated iron catalysts was investigated during Fischer–Tropsch synthesis using a continuously stirred tank reactor. Characterization by temperature-programmed reduction with CO, Mössbauer effect sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis letters 2014-10, Vol.144 (10), p.1704-1716
Hauptverfasser: Pendyala, Venkat Ramana Rao, Graham, Uschi M., Jacobs, Gary, Hamdeh, Hussein H., Davis, Burtron H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1716
container_issue 10
container_start_page 1704
container_title Catalysis letters
container_volume 144
creator Pendyala, Venkat Ramana Rao
Graham, Uschi M.
Jacobs, Gary
Hamdeh, Hussein H.
Davis, Burtron H.
description The effect of potassium promoter loading (0, 0.5, 1.0 and 2.0 atomic ratio) on the performance of precipitated iron catalysts was investigated during Fischer–Tropsch synthesis using a continuously stirred tank reactor. Characterization by temperature-programmed reduction with CO, Mössbauer effect spectroscopy, and transmission/scanning transmission electron microscopy were used to study the effect of potassium promoter interactions on the carburization, phase transformation and carbon layer formation behavior of the catalysts. Under similar reaction conditions, all four catalysts exhibited similar initial CO conversions (~85 %), whereas stability was found to increase with potassium loading up to 0.5 % (atomic ratio related to the iron), and further increases in potassium led to decreased activity. Unpromoted and excessively K loaded (2.0K/100Fe) catalysts exhibited similar deactivation trends with time and followed essentially similar conversion levels with time-on-stream. The selectivity of various potassium promoted catalysts was found to increase the average molecular weight of hydrocarbon products with increasing potassium loading. The deactivation rate was related to carbon deposition which could embed the iron carbide particles. If not enough K is present, Fe carbides tend to oxidize with TOS; with excessive K-loading, carbon deposition/site blocking become problematic. Graphical Abstract
doi_str_mv 10.1007/s10562-014-1336-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2258925524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A383459081</galeid><sourcerecordid>A383459081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-feb26e9ec1a36b51d792bfb50a533b5b6b166d17ac9ad9a1d22c87af4a33efd3</originalsourceid><addsrcrecordid>eNqNks9uEzEQxlcIJErhAbhZQhw4bPGf9XrNrUoJRIpERXPozZr12qmrZB08XkR64h14Q54El1RADwjkg2fGv--zNPqq6jmjJ4xS9RoZlS2vKWtqJkRb3zyojphUvO6UvnxYaspYLRS_fFw9QbymlGrF9FGV5wHtlUvfv35bpbgrNbnYj_nKYcA35MyBzeEz5BBHAkiAzKfR_uyiJ-cxA2KYtuQ8xW3MLpFlhCGMa-JjKkNnwy5kyG4gi1Q0M8iw2WN-Wj3ysEH37O4-rlbzt6vZ-3r54d1idrqsrdQ61971vHXaWQai7SUblOa97yUFKUQv-7ZnbTswBVbDoIENnNtOgW9ACOcHcVy9ONjuUvw0OczmOk5pLD8azmWnuZS8KdTJgVrDxpkw-pgT2HIGtw02js6HMj9tRKOY4pT-r0B0opGadqwIXt0TFCa7L3kNE6JZXHy8b_4v9k9fdmBtiojJebNLYQtpbxg1t6kwh1SYkgpzmwpzUzQv73YCaGHjE4w24C8h77qm4VQXjh84LE_j2qXfu_u7-Q-MoMhx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258925524</pqid></control><display><type>article</type><title>Fischer–Tropsch Synthesis: Deactivation as a Function of Potassium Promoter Loading for Precipitated Iron Catalyst</title><source>SpringerNature Journals</source><creator>Pendyala, Venkat Ramana Rao ; Graham, Uschi M. ; Jacobs, Gary ; Hamdeh, Hussein H. ; Davis, Burtron H.</creator><creatorcontrib>Pendyala, Venkat Ramana Rao ; Graham, Uschi M. ; Jacobs, Gary ; Hamdeh, Hussein H. ; Davis, Burtron H.</creatorcontrib><description>The effect of potassium promoter loading (0, 0.5, 1.0 and 2.0 atomic ratio) on the performance of precipitated iron catalysts was investigated during Fischer–Tropsch synthesis using a continuously stirred tank reactor. Characterization by temperature-programmed reduction with CO, Mössbauer effect spectroscopy, and transmission/scanning transmission electron microscopy were used to study the effect of potassium promoter interactions on the carburization, phase transformation and carbon layer formation behavior of the catalysts. Under similar reaction conditions, all four catalysts exhibited similar initial CO conversions (~85 %), whereas stability was found to increase with potassium loading up to 0.5 % (atomic ratio related to the iron), and further increases in potassium led to decreased activity. Unpromoted and excessively K loaded (2.0K/100Fe) catalysts exhibited similar deactivation trends with time and followed essentially similar conversion levels with time-on-stream. The selectivity of various potassium promoted catalysts was found to increase the average molecular weight of hydrocarbon products with increasing potassium loading. The deactivation rate was related to carbon deposition which could embed the iron carbide particles. If not enough K is present, Fe carbides tend to oxidize with TOS; with excessive K-loading, carbon deposition/site blocking become problematic. Graphical Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-014-1336-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon ; Carburization (corrosion) ; Carburizing ; Catalysis ; Catalysts ; Chemistry ; Chemistry and Materials Science ; Continuously stirred tank reactors ; Deactivation ; Deposition ; Exact sciences and technology ; Fischer-Tropsch process ; General and physical chemistry ; Industrial Chemistry/Chemical Engineering ; Iron carbides ; Mossbauer spectroscopy ; Organometallic Chemistry ; Phase transitions ; Physical Chemistry ; Potassium ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Selectivity ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Transmission electron microscopy</subject><ispartof>Catalysis letters, 2014-10, Vol.144 (10), p.1704-1716</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Catalysis Letters is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-feb26e9ec1a36b51d792bfb50a533b5b6b166d17ac9ad9a1d22c87af4a33efd3</citedby><cites>FETCH-LOGICAL-c599t-feb26e9ec1a36b51d792bfb50a533b5b6b166d17ac9ad9a1d22c87af4a33efd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-014-1336-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-014-1336-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28844209$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pendyala, Venkat Ramana Rao</creatorcontrib><creatorcontrib>Graham, Uschi M.</creatorcontrib><creatorcontrib>Jacobs, Gary</creatorcontrib><creatorcontrib>Hamdeh, Hussein H.</creatorcontrib><creatorcontrib>Davis, Burtron H.</creatorcontrib><title>Fischer–Tropsch Synthesis: Deactivation as a Function of Potassium Promoter Loading for Precipitated Iron Catalyst</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>The effect of potassium promoter loading (0, 0.5, 1.0 and 2.0 atomic ratio) on the performance of precipitated iron catalysts was investigated during Fischer–Tropsch synthesis using a continuously stirred tank reactor. Characterization by temperature-programmed reduction with CO, Mössbauer effect spectroscopy, and transmission/scanning transmission electron microscopy were used to study the effect of potassium promoter interactions on the carburization, phase transformation and carbon layer formation behavior of the catalysts. Under similar reaction conditions, all four catalysts exhibited similar initial CO conversions (~85 %), whereas stability was found to increase with potassium loading up to 0.5 % (atomic ratio related to the iron), and further increases in potassium led to decreased activity. Unpromoted and excessively K loaded (2.0K/100Fe) catalysts exhibited similar deactivation trends with time and followed essentially similar conversion levels with time-on-stream. The selectivity of various potassium promoted catalysts was found to increase the average molecular weight of hydrocarbon products with increasing potassium loading. The deactivation rate was related to carbon deposition which could embed the iron carbide particles. If not enough K is present, Fe carbides tend to oxidize with TOS; with excessive K-loading, carbon deposition/site blocking become problematic. Graphical Abstract</description><subject>Carbon</subject><subject>Carburization (corrosion)</subject><subject>Carburizing</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Continuously stirred tank reactors</subject><subject>Deactivation</subject><subject>Deposition</subject><subject>Exact sciences and technology</subject><subject>Fischer-Tropsch process</subject><subject>General and physical chemistry</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Iron carbides</subject><subject>Mossbauer spectroscopy</subject><subject>Organometallic Chemistry</subject><subject>Phase transitions</subject><subject>Physical Chemistry</subject><subject>Potassium</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Selectivity</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Transmission electron microscopy</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNks9uEzEQxlcIJErhAbhZQhw4bPGf9XrNrUoJRIpERXPozZr12qmrZB08XkR64h14Q54El1RADwjkg2fGv--zNPqq6jmjJ4xS9RoZlS2vKWtqJkRb3zyojphUvO6UvnxYaspYLRS_fFw9QbymlGrF9FGV5wHtlUvfv35bpbgrNbnYj_nKYcA35MyBzeEz5BBHAkiAzKfR_uyiJ-cxA2KYtuQ8xW3MLpFlhCGMa-JjKkNnwy5kyG4gi1Q0M8iw2WN-Wj3ysEH37O4-rlbzt6vZ-3r54d1idrqsrdQ61971vHXaWQai7SUblOa97yUFKUQv-7ZnbTswBVbDoIENnNtOgW9ACOcHcVy9ONjuUvw0OczmOk5pLD8azmWnuZS8KdTJgVrDxpkw-pgT2HIGtw02js6HMj9tRKOY4pT-r0B0opGadqwIXt0TFCa7L3kNE6JZXHy8b_4v9k9fdmBtiojJebNLYQtpbxg1t6kwh1SYkgpzmwpzUzQv73YCaGHjE4w24C8h77qm4VQXjh84LE_j2qXfu_u7-Q-MoMhx</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Pendyala, Venkat Ramana Rao</creator><creator>Graham, Uschi M.</creator><creator>Jacobs, Gary</creator><creator>Hamdeh, Hussein H.</creator><creator>Davis, Burtron H.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20141001</creationdate><title>Fischer–Tropsch Synthesis: Deactivation as a Function of Potassium Promoter Loading for Precipitated Iron Catalyst</title><author>Pendyala, Venkat Ramana Rao ; Graham, Uschi M. ; Jacobs, Gary ; Hamdeh, Hussein H. ; Davis, Burtron H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-feb26e9ec1a36b51d792bfb50a533b5b6b166d17ac9ad9a1d22c87af4a33efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbon</topic><topic>Carburization (corrosion)</topic><topic>Carburizing</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Continuously stirred tank reactors</topic><topic>Deactivation</topic><topic>Deposition</topic><topic>Exact sciences and technology</topic><topic>Fischer-Tropsch process</topic><topic>General and physical chemistry</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Iron carbides</topic><topic>Mossbauer spectroscopy</topic><topic>Organometallic Chemistry</topic><topic>Phase transitions</topic><topic>Physical Chemistry</topic><topic>Potassium</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Selectivity</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pendyala, Venkat Ramana Rao</creatorcontrib><creatorcontrib>Graham, Uschi M.</creatorcontrib><creatorcontrib>Jacobs, Gary</creatorcontrib><creatorcontrib>Hamdeh, Hussein H.</creatorcontrib><creatorcontrib>Davis, Burtron H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pendyala, Venkat Ramana Rao</au><au>Graham, Uschi M.</au><au>Jacobs, Gary</au><au>Hamdeh, Hussein H.</au><au>Davis, Burtron H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fischer–Tropsch Synthesis: Deactivation as a Function of Potassium Promoter Loading for Precipitated Iron Catalyst</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>144</volume><issue>10</issue><spage>1704</spage><epage>1716</epage><pages>1704-1716</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>The effect of potassium promoter loading (0, 0.5, 1.0 and 2.0 atomic ratio) on the performance of precipitated iron catalysts was investigated during Fischer–Tropsch synthesis using a continuously stirred tank reactor. Characterization by temperature-programmed reduction with CO, Mössbauer effect spectroscopy, and transmission/scanning transmission electron microscopy were used to study the effect of potassium promoter interactions on the carburization, phase transformation and carbon layer formation behavior of the catalysts. Under similar reaction conditions, all four catalysts exhibited similar initial CO conversions (~85 %), whereas stability was found to increase with potassium loading up to 0.5 % (atomic ratio related to the iron), and further increases in potassium led to decreased activity. Unpromoted and excessively K loaded (2.0K/100Fe) catalysts exhibited similar deactivation trends with time and followed essentially similar conversion levels with time-on-stream. The selectivity of various potassium promoted catalysts was found to increase the average molecular weight of hydrocarbon products with increasing potassium loading. The deactivation rate was related to carbon deposition which could embed the iron carbide particles. If not enough K is present, Fe carbides tend to oxidize with TOS; with excessive K-loading, carbon deposition/site blocking become problematic. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-014-1336-z</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1011-372X
ispartof Catalysis letters, 2014-10, Vol.144 (10), p.1704-1716
issn 1011-372X
1572-879X
language eng
recordid cdi_proquest_journals_2258925524
source SpringerNature Journals
subjects Carbon
Carburization (corrosion)
Carburizing
Catalysis
Catalysts
Chemistry
Chemistry and Materials Science
Continuously stirred tank reactors
Deactivation
Deposition
Exact sciences and technology
Fischer-Tropsch process
General and physical chemistry
Industrial Chemistry/Chemical Engineering
Iron carbides
Mossbauer spectroscopy
Organometallic Chemistry
Phase transitions
Physical Chemistry
Potassium
Scanning electron microscopy
Scanning transmission electron microscopy
Selectivity
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Transmission electron microscopy
title Fischer–Tropsch Synthesis: Deactivation as a Function of Potassium Promoter Loading for Precipitated Iron Catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fischer%E2%80%93Tropsch%20Synthesis:%20Deactivation%20as%20a%20Function%20of%20Potassium%20Promoter%20Loading%20for%20Precipitated%20Iron%20Catalyst&rft.jtitle=Catalysis%20letters&rft.au=Pendyala,%20Venkat%20Ramana%20Rao&rft.date=2014-10-01&rft.volume=144&rft.issue=10&rft.spage=1704&rft.epage=1716&rft.pages=1704-1716&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-014-1336-z&rft_dat=%3Cgale_proqu%3EA383459081%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258925524&rft_id=info:pmid/&rft_galeid=A383459081&rfr_iscdi=true