Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent (IPCA) and Kinetic Study

Integrated photocatalytic adsorbents (IPCAs) comprised of nanocrystalline titanium dioxide (TiO₂) and activated carbon (AC) were prepared using an ultrasonic impregnation technique. The IPCAs were characterised by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis letters 2011-02, Vol.141 (2), p.300-308
Hauptverfasser: Keane, David, Basha, Shaik, Nolan, Kieran, Morrissey, Anne, Oelgemöller, Michael, Tobin, John M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue 2
container_start_page 300
container_title Catalysis letters
container_volume 141
creator Keane, David
Basha, Shaik
Nolan, Kieran
Morrissey, Anne
Oelgemöller, Michael
Tobin, John M
description Integrated photocatalytic adsorbents (IPCAs) comprised of nanocrystalline titanium dioxide (TiO₂) and activated carbon (AC) were prepared using an ultrasonic impregnation technique. The IPCAs were characterised by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy and were employed as catalysts for the photodegradation of famotidine-an active pharmaceutical ingredient-in aqueous solutions using illumination from a 125 W medium pressure mercury lamp. The degradation kinetics were found to follow a pseudo-first-order rate law and varying TiO₂ loadings induced different increases in the apparent first-order rate constant of the process. The kinetic behaviour can be described in terms of a modified Langmuir-Hinshelwood (LH) model. The IPCA prepared using a 10% TiO₂ to AC loading exhibited the highest rate constant with a K C and k r of 0.0172 L/mg and 0.237 mg/L/min, respectively. The LH model fits the experimental data and elucidates the effect of the TiO₂ content of the IPCA on the degradation rate. The use of calcination (heat treatment) in IPCA preparation and its effect on photocatalytic and adsorption performance were also investigated. The present work demonstrates that the combination of TiO₂ and AC results in a promising material for application in the degradation of organic pollutants. Graphical Abstract The values of the adsorption equilibrium constants, K C , and the rate constants, k r , for the photodegradation of famotidine were dependent on TiO₂ content of IPCAs. [graphic removed]
doi_str_mv 10.1007/s10562-010-0485-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2258921541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A357146569</galeid><sourcerecordid>A357146569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-bb5adbc06da8382c3564461a3d891f8652567117e976ae780650f9c80c50b54b3</originalsourceid><addsrcrecordid>eNp9kV1rFDEYhQdRsFZ_gFcOiGAvpr5JJl-Xy2J1sWBxLfTKkEkya8pu0iZZcP69WadYFkRykZDznPOSnKZ5jeAcAfAPGQFluAMEHfSCdtOT5gRRjjvB5c3TegaEOsLxzfPmRc63ACA5kifNj6ufsUTrNklbXXwMbRzbC72LxVsfXDtM7SqUg1ycbf_ARhe9nYo37cLmmAYXSvt-dbVcnLU62PZLtR3Eddnb6WXzbNTb7F497KfN9cXH78vP3eXXT6vl4rIzlPDSDQPVdjDArBZEYEMo63uGNLFColEwiinjCHEnOdOOC2AURmkEGAoD7Qdy2rydc-9SvN-7XNRt3KdQRyqMqZAY0R49Uhu9dcqHMZakzc5noxaEctQzymSlzv9B1WXdzpsY3Ojr_ZHh7MhQmeJ-lY3e56xW62_HLJpZk2LOyY3qLvmdTpNCoA5NqrlJVZtUhybVVD3vHh6ns9HbMelgfP5rxESC4LyvHJ65XKWwcenxE_4X_mY2jToqvUk1-HqNARFAsq8IJr8Bj0Oz9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258921541</pqid></control><display><type>article</type><title>Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent (IPCA) and Kinetic Study</title><source>SpringerLink Journals</source><creator>Keane, David ; Basha, Shaik ; Nolan, Kieran ; Morrissey, Anne ; Oelgemöller, Michael ; Tobin, John M</creator><creatorcontrib>Keane, David ; Basha, Shaik ; Nolan, Kieran ; Morrissey, Anne ; Oelgemöller, Michael ; Tobin, John M</creatorcontrib><description>Integrated photocatalytic adsorbents (IPCAs) comprised of nanocrystalline titanium dioxide (TiO₂) and activated carbon (AC) were prepared using an ultrasonic impregnation technique. The IPCAs were characterised by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy and were employed as catalysts for the photodegradation of famotidine-an active pharmaceutical ingredient-in aqueous solutions using illumination from a 125 W medium pressure mercury lamp. The degradation kinetics were found to follow a pseudo-first-order rate law and varying TiO₂ loadings induced different increases in the apparent first-order rate constant of the process. The kinetic behaviour can be described in terms of a modified Langmuir-Hinshelwood (LH) model. The IPCA prepared using a 10% TiO₂ to AC loading exhibited the highest rate constant with a K C and k r of 0.0172 L/mg and 0.237 mg/L/min, respectively. The LH model fits the experimental data and elucidates the effect of the TiO₂ content of the IPCA on the degradation rate. The use of calcination (heat treatment) in IPCA preparation and its effect on photocatalytic and adsorption performance were also investigated. The present work demonstrates that the combination of TiO₂ and AC results in a promising material for application in the degradation of organic pollutants. Graphical Abstract The values of the adsorption equilibrium constants, K C , and the rate constants, k r , for the photodegradation of famotidine were dependent on TiO₂ content of IPCAs. [graphic removed]</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-010-0485-y</identifier><language>eng</language><publisher>Boston: Boston : Springer US</publisher><subject>Activated carbon ; Adsorbents ; Adsorption ; Aqueous solutions ; Catalysis ; Chemical equilibrium ; Chemistry ; Chemistry and Materials Science ; Exact sciences and technology ; Famotidine ; Fourier transforms ; General and physical chemistry ; Heat treatment ; Industrial Chemistry/Chemical Engineering ; Infrared spectroscopy ; Integrated photocatalytic adsorbents ; Mercury lamps ; Organometallic Chemistry ; Oxidation ; Photocatalysis ; Photochemistry ; Photodegradation ; Physical Chemistry ; Physical chemistry of induced reactions (with radiations, particles and ultrasonics) ; Pollutants ; Rate constants ; Reaction kinetics ; Scanning electron microscopy ; Surface physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Titanium dioxide</subject><ispartof>Catalysis letters, 2011-02, Vol.141 (2), p.300-308</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Springer</rights><rights>Catalysis Letters is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-bb5adbc06da8382c3564461a3d891f8652567117e976ae780650f9c80c50b54b3</citedby><cites>FETCH-LOGICAL-c537t-bb5adbc06da8382c3564461a3d891f8652567117e976ae780650f9c80c50b54b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-010-0485-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-010-0485-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23908774$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keane, David</creatorcontrib><creatorcontrib>Basha, Shaik</creatorcontrib><creatorcontrib>Nolan, Kieran</creatorcontrib><creatorcontrib>Morrissey, Anne</creatorcontrib><creatorcontrib>Oelgemöller, Michael</creatorcontrib><creatorcontrib>Tobin, John M</creatorcontrib><title>Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent (IPCA) and Kinetic Study</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>Integrated photocatalytic adsorbents (IPCAs) comprised of nanocrystalline titanium dioxide (TiO₂) and activated carbon (AC) were prepared using an ultrasonic impregnation technique. The IPCAs were characterised by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy and were employed as catalysts for the photodegradation of famotidine-an active pharmaceutical ingredient-in aqueous solutions using illumination from a 125 W medium pressure mercury lamp. The degradation kinetics were found to follow a pseudo-first-order rate law and varying TiO₂ loadings induced different increases in the apparent first-order rate constant of the process. The kinetic behaviour can be described in terms of a modified Langmuir-Hinshelwood (LH) model. The IPCA prepared using a 10% TiO₂ to AC loading exhibited the highest rate constant with a K C and k r of 0.0172 L/mg and 0.237 mg/L/min, respectively. The LH model fits the experimental data and elucidates the effect of the TiO₂ content of the IPCA on the degradation rate. The use of calcination (heat treatment) in IPCA preparation and its effect on photocatalytic and adsorption performance were also investigated. The present work demonstrates that the combination of TiO₂ and AC results in a promising material for application in the degradation of organic pollutants. Graphical Abstract The values of the adsorption equilibrium constants, K C , and the rate constants, k r , for the photodegradation of famotidine were dependent on TiO₂ content of IPCAs. [graphic removed]</description><subject>Activated carbon</subject><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Aqueous solutions</subject><subject>Catalysis</subject><subject>Chemical equilibrium</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Exact sciences and technology</subject><subject>Famotidine</subject><subject>Fourier transforms</subject><subject>General and physical chemistry</subject><subject>Heat treatment</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Infrared spectroscopy</subject><subject>Integrated photocatalytic adsorbents</subject><subject>Mercury lamps</subject><subject>Organometallic Chemistry</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photochemistry</subject><subject>Photodegradation</subject><subject>Physical Chemistry</subject><subject>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</subject><subject>Pollutants</subject><subject>Rate constants</subject><subject>Reaction kinetics</subject><subject>Scanning electron microscopy</subject><subject>Surface physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Titanium dioxide</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kV1rFDEYhQdRsFZ_gFcOiGAvpr5JJl-Xy2J1sWBxLfTKkEkya8pu0iZZcP69WadYFkRykZDznPOSnKZ5jeAcAfAPGQFluAMEHfSCdtOT5gRRjjvB5c3TegaEOsLxzfPmRc63ACA5kifNj6ufsUTrNklbXXwMbRzbC72LxVsfXDtM7SqUg1ycbf_ARhe9nYo37cLmmAYXSvt-dbVcnLU62PZLtR3Eddnb6WXzbNTb7F497KfN9cXH78vP3eXXT6vl4rIzlPDSDQPVdjDArBZEYEMo63uGNLFColEwiinjCHEnOdOOC2AURmkEGAoD7Qdy2rydc-9SvN-7XNRt3KdQRyqMqZAY0R49Uhu9dcqHMZakzc5noxaEctQzymSlzv9B1WXdzpsY3Ojr_ZHh7MhQmeJ-lY3e56xW62_HLJpZk2LOyY3qLvmdTpNCoA5NqrlJVZtUhybVVD3vHh6ns9HbMelgfP5rxESC4LyvHJ65XKWwcenxE_4X_mY2jToqvUk1-HqNARFAsq8IJr8Bj0Oz9A</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Keane, David</creator><creator>Basha, Shaik</creator><creator>Nolan, Kieran</creator><creator>Morrissey, Anne</creator><creator>Oelgemöller, Michael</creator><creator>Tobin, John M</creator><general>Boston : Springer US</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110201</creationdate><title>Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent (IPCA) and Kinetic Study</title><author>Keane, David ; Basha, Shaik ; Nolan, Kieran ; Morrissey, Anne ; Oelgemöller, Michael ; Tobin, John M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-bb5adbc06da8382c3564461a3d891f8652567117e976ae780650f9c80c50b54b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activated carbon</topic><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Aqueous solutions</topic><topic>Catalysis</topic><topic>Chemical equilibrium</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Exact sciences and technology</topic><topic>Famotidine</topic><topic>Fourier transforms</topic><topic>General and physical chemistry</topic><topic>Heat treatment</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Infrared spectroscopy</topic><topic>Integrated photocatalytic adsorbents</topic><topic>Mercury lamps</topic><topic>Organometallic Chemistry</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photochemistry</topic><topic>Photodegradation</topic><topic>Physical Chemistry</topic><topic>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</topic><topic>Pollutants</topic><topic>Rate constants</topic><topic>Reaction kinetics</topic><topic>Scanning electron microscopy</topic><topic>Surface physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keane, David</creatorcontrib><creatorcontrib>Basha, Shaik</creatorcontrib><creatorcontrib>Nolan, Kieran</creatorcontrib><creatorcontrib>Morrissey, Anne</creatorcontrib><creatorcontrib>Oelgemöller, Michael</creatorcontrib><creatorcontrib>Tobin, John M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keane, David</au><au>Basha, Shaik</au><au>Nolan, Kieran</au><au>Morrissey, Anne</au><au>Oelgemöller, Michael</au><au>Tobin, John M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent (IPCA) and Kinetic Study</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>141</volume><issue>2</issue><spage>300</spage><epage>308</epage><pages>300-308</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>Integrated photocatalytic adsorbents (IPCAs) comprised of nanocrystalline titanium dioxide (TiO₂) and activated carbon (AC) were prepared using an ultrasonic impregnation technique. The IPCAs were characterised by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy and were employed as catalysts for the photodegradation of famotidine-an active pharmaceutical ingredient-in aqueous solutions using illumination from a 125 W medium pressure mercury lamp. The degradation kinetics were found to follow a pseudo-first-order rate law and varying TiO₂ loadings induced different increases in the apparent first-order rate constant of the process. The kinetic behaviour can be described in terms of a modified Langmuir-Hinshelwood (LH) model. The IPCA prepared using a 10% TiO₂ to AC loading exhibited the highest rate constant with a K C and k r of 0.0172 L/mg and 0.237 mg/L/min, respectively. The LH model fits the experimental data and elucidates the effect of the TiO₂ content of the IPCA on the degradation rate. The use of calcination (heat treatment) in IPCA preparation and its effect on photocatalytic and adsorption performance were also investigated. The present work demonstrates that the combination of TiO₂ and AC results in a promising material for application in the degradation of organic pollutants. Graphical Abstract The values of the adsorption equilibrium constants, K C , and the rate constants, k r , for the photodegradation of famotidine were dependent on TiO₂ content of IPCAs. [graphic removed]</abstract><cop>Boston</cop><pub>Boston : Springer US</pub><doi>10.1007/s10562-010-0485-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1011-372X
ispartof Catalysis letters, 2011-02, Vol.141 (2), p.300-308
issn 1011-372X
1572-879X
language eng
recordid cdi_proquest_journals_2258921541
source SpringerLink Journals
subjects Activated carbon
Adsorbents
Adsorption
Aqueous solutions
Catalysis
Chemical equilibrium
Chemistry
Chemistry and Materials Science
Exact sciences and technology
Famotidine
Fourier transforms
General and physical chemistry
Heat treatment
Industrial Chemistry/Chemical Engineering
Infrared spectroscopy
Integrated photocatalytic adsorbents
Mercury lamps
Organometallic Chemistry
Oxidation
Photocatalysis
Photochemistry
Photodegradation
Physical Chemistry
Physical chemistry of induced reactions (with radiations, particles and ultrasonics)
Pollutants
Rate constants
Reaction kinetics
Scanning electron microscopy
Surface physical chemistry
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Titanium dioxide
title Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent (IPCA) and Kinetic Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photodegradation%20of%20Famotidine%20by%20Integrated%20Photocatalytic%20Adsorbent%20(IPCA)%20and%20Kinetic%20Study&rft.jtitle=Catalysis%20letters&rft.au=Keane,%20David&rft.date=2011-02-01&rft.volume=141&rft.issue=2&rft.spage=300&rft.epage=308&rft.pages=300-308&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-010-0485-y&rft_dat=%3Cgale_proqu%3EA357146569%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258921541&rft_id=info:pmid/&rft_galeid=A357146569&rfr_iscdi=true