Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent (IPCA) and Kinetic Study
Integrated photocatalytic adsorbents (IPCAs) comprised of nanocrystalline titanium dioxide (TiO₂) and activated carbon (AC) were prepared using an ultrasonic impregnation technique. The IPCAs were characterised by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy...
Gespeichert in:
Veröffentlicht in: | Catalysis letters 2011-02, Vol.141 (2), p.300-308 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | 2 |
container_start_page | 300 |
container_title | Catalysis letters |
container_volume | 141 |
creator | Keane, David Basha, Shaik Nolan, Kieran Morrissey, Anne Oelgemöller, Michael Tobin, John M |
description | Integrated photocatalytic adsorbents (IPCAs) comprised of nanocrystalline titanium dioxide (TiO₂) and activated carbon (AC) were prepared using an ultrasonic impregnation technique. The IPCAs were characterised by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy and were employed as catalysts for the photodegradation of famotidine-an active pharmaceutical ingredient-in aqueous solutions using illumination from a 125 W medium pressure mercury lamp. The degradation kinetics were found to follow a pseudo-first-order rate law and varying TiO₂ loadings induced different increases in the apparent first-order rate constant of the process. The kinetic behaviour can be described in terms of a modified Langmuir-Hinshelwood (LH) model. The IPCA prepared using a 10% TiO₂ to AC loading exhibited the highest rate constant with a K C and k r of 0.0172 L/mg and 0.237 mg/L/min, respectively. The LH model fits the experimental data and elucidates the effect of the TiO₂ content of the IPCA on the degradation rate. The use of calcination (heat treatment) in IPCA preparation and its effect on photocatalytic and adsorption performance were also investigated. The present work demonstrates that the combination of TiO₂ and AC results in a promising material for application in the degradation of organic pollutants. Graphical Abstract The values of the adsorption equilibrium constants, K C , and the rate constants, k r , for the photodegradation of famotidine were dependent on TiO₂ content of IPCAs. [graphic removed] |
doi_str_mv | 10.1007/s10562-010-0485-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2258921541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A357146569</galeid><sourcerecordid>A357146569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-bb5adbc06da8382c3564461a3d891f8652567117e976ae780650f9c80c50b54b3</originalsourceid><addsrcrecordid>eNp9kV1rFDEYhQdRsFZ_gFcOiGAvpr5JJl-Xy2J1sWBxLfTKkEkya8pu0iZZcP69WadYFkRykZDznPOSnKZ5jeAcAfAPGQFluAMEHfSCdtOT5gRRjjvB5c3TegaEOsLxzfPmRc63ACA5kifNj6ufsUTrNklbXXwMbRzbC72LxVsfXDtM7SqUg1ycbf_ARhe9nYo37cLmmAYXSvt-dbVcnLU62PZLtR3Eddnb6WXzbNTb7F497KfN9cXH78vP3eXXT6vl4rIzlPDSDQPVdjDArBZEYEMo63uGNLFColEwiinjCHEnOdOOC2AURmkEGAoD7Qdy2rydc-9SvN-7XNRt3KdQRyqMqZAY0R49Uhu9dcqHMZakzc5noxaEctQzymSlzv9B1WXdzpsY3Ojr_ZHh7MhQmeJ-lY3e56xW62_HLJpZk2LOyY3qLvmdTpNCoA5NqrlJVZtUhybVVD3vHh6ns9HbMelgfP5rxESC4LyvHJ65XKWwcenxE_4X_mY2jToqvUk1-HqNARFAsq8IJr8Bj0Oz9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258921541</pqid></control><display><type>article</type><title>Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent (IPCA) and Kinetic Study</title><source>SpringerLink Journals</source><creator>Keane, David ; Basha, Shaik ; Nolan, Kieran ; Morrissey, Anne ; Oelgemöller, Michael ; Tobin, John M</creator><creatorcontrib>Keane, David ; Basha, Shaik ; Nolan, Kieran ; Morrissey, Anne ; Oelgemöller, Michael ; Tobin, John M</creatorcontrib><description>Integrated photocatalytic adsorbents (IPCAs) comprised of nanocrystalline titanium dioxide (TiO₂) and activated carbon (AC) were prepared using an ultrasonic impregnation technique. The IPCAs were characterised by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy and were employed as catalysts for the photodegradation of famotidine-an active pharmaceutical ingredient-in aqueous solutions using illumination from a 125 W medium pressure mercury lamp. The degradation kinetics were found to follow a pseudo-first-order rate law and varying TiO₂ loadings induced different increases in the apparent first-order rate constant of the process. The kinetic behaviour can be described in terms of a modified Langmuir-Hinshelwood (LH) model. The IPCA prepared using a 10% TiO₂ to AC loading exhibited the highest rate constant with a K C and k r of 0.0172 L/mg and 0.237 mg/L/min, respectively. The LH model fits the experimental data and elucidates the effect of the TiO₂ content of the IPCA on the degradation rate. The use of calcination (heat treatment) in IPCA preparation and its effect on photocatalytic and adsorption performance were also investigated. The present work demonstrates that the combination of TiO₂ and AC results in a promising material for application in the degradation of organic pollutants. Graphical Abstract The values of the adsorption equilibrium constants, K C , and the rate constants, k r , for the photodegradation of famotidine were dependent on TiO₂ content of IPCAs. [graphic removed]</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-010-0485-y</identifier><language>eng</language><publisher>Boston: Boston : Springer US</publisher><subject>Activated carbon ; Adsorbents ; Adsorption ; Aqueous solutions ; Catalysis ; Chemical equilibrium ; Chemistry ; Chemistry and Materials Science ; Exact sciences and technology ; Famotidine ; Fourier transforms ; General and physical chemistry ; Heat treatment ; Industrial Chemistry/Chemical Engineering ; Infrared spectroscopy ; Integrated photocatalytic adsorbents ; Mercury lamps ; Organometallic Chemistry ; Oxidation ; Photocatalysis ; Photochemistry ; Photodegradation ; Physical Chemistry ; Physical chemistry of induced reactions (with radiations, particles and ultrasonics) ; Pollutants ; Rate constants ; Reaction kinetics ; Scanning electron microscopy ; Surface physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Titanium dioxide</subject><ispartof>Catalysis letters, 2011-02, Vol.141 (2), p.300-308</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Springer</rights><rights>Catalysis Letters is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-bb5adbc06da8382c3564461a3d891f8652567117e976ae780650f9c80c50b54b3</citedby><cites>FETCH-LOGICAL-c537t-bb5adbc06da8382c3564461a3d891f8652567117e976ae780650f9c80c50b54b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-010-0485-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-010-0485-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23908774$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keane, David</creatorcontrib><creatorcontrib>Basha, Shaik</creatorcontrib><creatorcontrib>Nolan, Kieran</creatorcontrib><creatorcontrib>Morrissey, Anne</creatorcontrib><creatorcontrib>Oelgemöller, Michael</creatorcontrib><creatorcontrib>Tobin, John M</creatorcontrib><title>Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent (IPCA) and Kinetic Study</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>Integrated photocatalytic adsorbents (IPCAs) comprised of nanocrystalline titanium dioxide (TiO₂) and activated carbon (AC) were prepared using an ultrasonic impregnation technique. The IPCAs were characterised by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy and were employed as catalysts for the photodegradation of famotidine-an active pharmaceutical ingredient-in aqueous solutions using illumination from a 125 W medium pressure mercury lamp. The degradation kinetics were found to follow a pseudo-first-order rate law and varying TiO₂ loadings induced different increases in the apparent first-order rate constant of the process. The kinetic behaviour can be described in terms of a modified Langmuir-Hinshelwood (LH) model. The IPCA prepared using a 10% TiO₂ to AC loading exhibited the highest rate constant with a K C and k r of 0.0172 L/mg and 0.237 mg/L/min, respectively. The LH model fits the experimental data and elucidates the effect of the TiO₂ content of the IPCA on the degradation rate. The use of calcination (heat treatment) in IPCA preparation and its effect on photocatalytic and adsorption performance were also investigated. The present work demonstrates that the combination of TiO₂ and AC results in a promising material for application in the degradation of organic pollutants. Graphical Abstract The values of the adsorption equilibrium constants, K C , and the rate constants, k r , for the photodegradation of famotidine were dependent on TiO₂ content of IPCAs. [graphic removed]</description><subject>Activated carbon</subject><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Aqueous solutions</subject><subject>Catalysis</subject><subject>Chemical equilibrium</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Exact sciences and technology</subject><subject>Famotidine</subject><subject>Fourier transforms</subject><subject>General and physical chemistry</subject><subject>Heat treatment</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Infrared spectroscopy</subject><subject>Integrated photocatalytic adsorbents</subject><subject>Mercury lamps</subject><subject>Organometallic Chemistry</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photochemistry</subject><subject>Photodegradation</subject><subject>Physical Chemistry</subject><subject>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</subject><subject>Pollutants</subject><subject>Rate constants</subject><subject>Reaction kinetics</subject><subject>Scanning electron microscopy</subject><subject>Surface physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Titanium dioxide</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kV1rFDEYhQdRsFZ_gFcOiGAvpr5JJl-Xy2J1sWBxLfTKkEkya8pu0iZZcP69WadYFkRykZDznPOSnKZ5jeAcAfAPGQFluAMEHfSCdtOT5gRRjjvB5c3TegaEOsLxzfPmRc63ACA5kifNj6ufsUTrNklbXXwMbRzbC72LxVsfXDtM7SqUg1ycbf_ARhe9nYo37cLmmAYXSvt-dbVcnLU62PZLtR3Eddnb6WXzbNTb7F497KfN9cXH78vP3eXXT6vl4rIzlPDSDQPVdjDArBZEYEMo63uGNLFColEwiinjCHEnOdOOC2AURmkEGAoD7Qdy2rydc-9SvN-7XNRt3KdQRyqMqZAY0R49Uhu9dcqHMZakzc5noxaEctQzymSlzv9B1WXdzpsY3Ojr_ZHh7MhQmeJ-lY3e56xW62_HLJpZk2LOyY3qLvmdTpNCoA5NqrlJVZtUhybVVD3vHh6ns9HbMelgfP5rxESC4LyvHJ65XKWwcenxE_4X_mY2jToqvUk1-HqNARFAsq8IJr8Bj0Oz9A</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Keane, David</creator><creator>Basha, Shaik</creator><creator>Nolan, Kieran</creator><creator>Morrissey, Anne</creator><creator>Oelgemöller, Michael</creator><creator>Tobin, John M</creator><general>Boston : Springer US</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110201</creationdate><title>Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent (IPCA) and Kinetic Study</title><author>Keane, David ; Basha, Shaik ; Nolan, Kieran ; Morrissey, Anne ; Oelgemöller, Michael ; Tobin, John M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-bb5adbc06da8382c3564461a3d891f8652567117e976ae780650f9c80c50b54b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activated carbon</topic><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Aqueous solutions</topic><topic>Catalysis</topic><topic>Chemical equilibrium</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Exact sciences and technology</topic><topic>Famotidine</topic><topic>Fourier transforms</topic><topic>General and physical chemistry</topic><topic>Heat treatment</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Infrared spectroscopy</topic><topic>Integrated photocatalytic adsorbents</topic><topic>Mercury lamps</topic><topic>Organometallic Chemistry</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photochemistry</topic><topic>Photodegradation</topic><topic>Physical Chemistry</topic><topic>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</topic><topic>Pollutants</topic><topic>Rate constants</topic><topic>Reaction kinetics</topic><topic>Scanning electron microscopy</topic><topic>Surface physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keane, David</creatorcontrib><creatorcontrib>Basha, Shaik</creatorcontrib><creatorcontrib>Nolan, Kieran</creatorcontrib><creatorcontrib>Morrissey, Anne</creatorcontrib><creatorcontrib>Oelgemöller, Michael</creatorcontrib><creatorcontrib>Tobin, John M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keane, David</au><au>Basha, Shaik</au><au>Nolan, Kieran</au><au>Morrissey, Anne</au><au>Oelgemöller, Michael</au><au>Tobin, John M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent (IPCA) and Kinetic Study</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>141</volume><issue>2</issue><spage>300</spage><epage>308</epage><pages>300-308</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>Integrated photocatalytic adsorbents (IPCAs) comprised of nanocrystalline titanium dioxide (TiO₂) and activated carbon (AC) were prepared using an ultrasonic impregnation technique. The IPCAs were characterised by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy and were employed as catalysts for the photodegradation of famotidine-an active pharmaceutical ingredient-in aqueous solutions using illumination from a 125 W medium pressure mercury lamp. The degradation kinetics were found to follow a pseudo-first-order rate law and varying TiO₂ loadings induced different increases in the apparent first-order rate constant of the process. The kinetic behaviour can be described in terms of a modified Langmuir-Hinshelwood (LH) model. The IPCA prepared using a 10% TiO₂ to AC loading exhibited the highest rate constant with a K C and k r of 0.0172 L/mg and 0.237 mg/L/min, respectively. The LH model fits the experimental data and elucidates the effect of the TiO₂ content of the IPCA on the degradation rate. The use of calcination (heat treatment) in IPCA preparation and its effect on photocatalytic and adsorption performance were also investigated. The present work demonstrates that the combination of TiO₂ and AC results in a promising material for application in the degradation of organic pollutants. Graphical Abstract The values of the adsorption equilibrium constants, K C , and the rate constants, k r , for the photodegradation of famotidine were dependent on TiO₂ content of IPCAs. [graphic removed]</abstract><cop>Boston</cop><pub>Boston : Springer US</pub><doi>10.1007/s10562-010-0485-y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1011-372X |
ispartof | Catalysis letters, 2011-02, Vol.141 (2), p.300-308 |
issn | 1011-372X 1572-879X |
language | eng |
recordid | cdi_proquest_journals_2258921541 |
source | SpringerLink Journals |
subjects | Activated carbon Adsorbents Adsorption Aqueous solutions Catalysis Chemical equilibrium Chemistry Chemistry and Materials Science Exact sciences and technology Famotidine Fourier transforms General and physical chemistry Heat treatment Industrial Chemistry/Chemical Engineering Infrared spectroscopy Integrated photocatalytic adsorbents Mercury lamps Organometallic Chemistry Oxidation Photocatalysis Photochemistry Photodegradation Physical Chemistry Physical chemistry of induced reactions (with radiations, particles and ultrasonics) Pollutants Rate constants Reaction kinetics Scanning electron microscopy Surface physical chemistry Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Titanium dioxide |
title | Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent (IPCA) and Kinetic Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photodegradation%20of%20Famotidine%20by%20Integrated%20Photocatalytic%20Adsorbent%20(IPCA)%20and%20Kinetic%20Study&rft.jtitle=Catalysis%20letters&rft.au=Keane,%20David&rft.date=2011-02-01&rft.volume=141&rft.issue=2&rft.spage=300&rft.epage=308&rft.pages=300-308&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-010-0485-y&rft_dat=%3Cgale_proqu%3EA357146569%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258921541&rft_id=info:pmid/&rft_galeid=A357146569&rfr_iscdi=true |