Clean Alternative for Adipic Acid Synthesis Via Liquid-Phase Oxidation of Cyclohexanone and Cyclohexanol Over H3−2xCoxPMo12O40 Catalysts with Hydrogen Peroxide

Adipic acid (AA) was synthesized from the oxidation of cyclohexanol (-ol), cyclohexanone (-one) and cyclohexanol/cyclohexanone (-ol/-one) mixture over a series of H 3−2x Co x PMo 12 O 40 (x: 0.0–1.5) Keggin-type polyoxometalates as catalysts in the presence of hydrogen peroxide (30 %) under mild con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis letters 2013-08, Vol.143 (8), p.749-755
Hauptverfasser: Benadji, S., Mazari, T., Dermeche, L., Salhi, N., Cadot, E., Rabia, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 755
container_issue 8
container_start_page 749
container_title Catalysis letters
container_volume 143
creator Benadji, S.
Mazari, T.
Dermeche, L.
Salhi, N.
Cadot, E.
Rabia, C.
description Adipic acid (AA) was synthesized from the oxidation of cyclohexanol (-ol), cyclohexanone (-one) and cyclohexanol/cyclohexanone (-ol/-one) mixture over a series of H 3−2x Co x PMo 12 O 40 (x: 0.0–1.5) Keggin-type polyoxometalates as catalysts in the presence of hydrogen peroxide (30 %) under mild conditions (90 °C, 20 h) and in solvent free. The heteropolysalts were prepared from H 3 PMo 12 O 40 and Ba(OH) 2 using the cationic exchange method and characterized by Infrared and diffuse reflectance UV–Vis spectroscopies, X-ray diffraction and TG analyses. The catalytic tests showed that salts are more efficient than the corresponding heteropolyacid and among the H 3−2x Co x PMo 12 O 40 (x: 0.25–1.5) series, H 1 Co 1 PMo 12 exhibits the highest AA yield for whole substrates, with ca. 76, 53 and 43 % from oxidation of -one, -ol and -ol/-one, respectively. Graphical Abstract
doi_str_mv 10.1007/s10562-013-1025-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2258921092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2258921092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-af7253e63d5d42d2d1c0859f31de58e0fe9ce5b22be28f2d28cb8064e88c6ff43</originalsourceid><addsrcrecordid>eNp1kc9uEzEQxlcIJErhAbhZQhwN9ni96z1GKyCVghKJP-pt5djjxtVip_amZN-Ac9-AV-NJcJUKuHCa0czv-zSar6pecvaGM9a-zZzJBijjgnIGkopH1RmXLVDVdpePS884p6KFy6fVs5yvGWNdy7uz6mc_og5kMU6Ygp78LRIXE1lYv_eGLIy35NMcph1mn8lXr8nK3xy8pZudzkjWR2-LKAYSHelnM8YdHnWIAYkO9t_JSNa3mMhS_PpxB8c-HjcfI4d1zUivJz3Oecrku592ZDnbFK8wkA2mWOzxefXE6THji4d6Xn15_-5zv6Sr9YeLfrGiRtTNRLVrQQpshJW2BguWG6Zk5wS3KBUyh51BuQXYIihXAGW2ijU1KmUa52pxXr06-e5TvDlgnobreCg_GfMAIFUHnHVQKH6iTIo5J3TDPvlvOs0DZ8N9EsMpiaEkMdwnMYiief3grLPRo0s6GJ__CKGVSjRSFg5OXC6rcIXp7wX_N_8NS8qbKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258921092</pqid></control><display><type>article</type><title>Clean Alternative for Adipic Acid Synthesis Via Liquid-Phase Oxidation of Cyclohexanone and Cyclohexanol Over H3−2xCoxPMo12O40 Catalysts with Hydrogen Peroxide</title><source>SpringerNature Journals</source><creator>Benadji, S. ; Mazari, T. ; Dermeche, L. ; Salhi, N. ; Cadot, E. ; Rabia, C.</creator><creatorcontrib>Benadji, S. ; Mazari, T. ; Dermeche, L. ; Salhi, N. ; Cadot, E. ; Rabia, C.</creatorcontrib><description>Adipic acid (AA) was synthesized from the oxidation of cyclohexanol (-ol), cyclohexanone (-one) and cyclohexanol/cyclohexanone (-ol/-one) mixture over a series of H 3−2x Co x PMo 12 O 40 (x: 0.0–1.5) Keggin-type polyoxometalates as catalysts in the presence of hydrogen peroxide (30 %) under mild conditions (90 °C, 20 h) and in solvent free. The heteropolysalts were prepared from H 3 PMo 12 O 40 and Ba(OH) 2 using the cationic exchange method and characterized by Infrared and diffuse reflectance UV–Vis spectroscopies, X-ray diffraction and TG analyses. The catalytic tests showed that salts are more efficient than the corresponding heteropolyacid and among the H 3−2x Co x PMo 12 O 40 (x: 0.25–1.5) series, H 1 Co 1 PMo 12 exhibits the highest AA yield for whole substrates, with ca. 76, 53 and 43 % from oxidation of -one, -ol and -ol/-one, respectively. Graphical Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-013-1025-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Barium hydroxide ; Catalysis ; Catalysts ; Cation exchanging ; Chemistry ; Chemistry and Materials Science ; Cyclohexanone ; Exact sciences and technology ; General and physical chemistry ; Hydrogen peroxide ; Industrial Chemistry/Chemical Engineering ; Infrared analysis ; Liquid phase oxidation ; Organometallic Chemistry ; Oxidation ; Physical Chemistry ; Polyoxometallates ; Reflectance ; Substrates ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; X-ray diffraction</subject><ispartof>Catalysis letters, 2013-08, Vol.143 (8), p.749-755</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>2014 INIST-CNRS</rights><rights>Catalysis Letters is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-af7253e63d5d42d2d1c0859f31de58e0fe9ce5b22be28f2d28cb8064e88c6ff43</citedby><cites>FETCH-LOGICAL-c346t-af7253e63d5d42d2d1c0859f31de58e0fe9ce5b22be28f2d28cb8064e88c6ff43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-013-1025-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-013-1025-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27583655$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Benadji, S.</creatorcontrib><creatorcontrib>Mazari, T.</creatorcontrib><creatorcontrib>Dermeche, L.</creatorcontrib><creatorcontrib>Salhi, N.</creatorcontrib><creatorcontrib>Cadot, E.</creatorcontrib><creatorcontrib>Rabia, C.</creatorcontrib><title>Clean Alternative for Adipic Acid Synthesis Via Liquid-Phase Oxidation of Cyclohexanone and Cyclohexanol Over H3−2xCoxPMo12O40 Catalysts with Hydrogen Peroxide</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>Adipic acid (AA) was synthesized from the oxidation of cyclohexanol (-ol), cyclohexanone (-one) and cyclohexanol/cyclohexanone (-ol/-one) mixture over a series of H 3−2x Co x PMo 12 O 40 (x: 0.0–1.5) Keggin-type polyoxometalates as catalysts in the presence of hydrogen peroxide (30 %) under mild conditions (90 °C, 20 h) and in solvent free. The heteropolysalts were prepared from H 3 PMo 12 O 40 and Ba(OH) 2 using the cationic exchange method and characterized by Infrared and diffuse reflectance UV–Vis spectroscopies, X-ray diffraction and TG analyses. The catalytic tests showed that salts are more efficient than the corresponding heteropolyacid and among the H 3−2x Co x PMo 12 O 40 (x: 0.25–1.5) series, H 1 Co 1 PMo 12 exhibits the highest AA yield for whole substrates, with ca. 76, 53 and 43 % from oxidation of -one, -ol and -ol/-one, respectively. Graphical Abstract</description><subject>Barium hydroxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cation exchanging</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cyclohexanone</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrogen peroxide</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Infrared analysis</subject><subject>Liquid phase oxidation</subject><subject>Organometallic Chemistry</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Polyoxometallates</subject><subject>Reflectance</subject><subject>Substrates</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>X-ray diffraction</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kc9uEzEQxlcIJErhAbhZQhwN9ni96z1GKyCVghKJP-pt5djjxtVip_amZN-Ac9-AV-NJcJUKuHCa0czv-zSar6pecvaGM9a-zZzJBijjgnIGkopH1RmXLVDVdpePS884p6KFy6fVs5yvGWNdy7uz6mc_og5kMU6Ygp78LRIXE1lYv_eGLIy35NMcph1mn8lXr8nK3xy8pZudzkjWR2-LKAYSHelnM8YdHnWIAYkO9t_JSNa3mMhS_PpxB8c-HjcfI4d1zUivJz3Oecrku592ZDnbFK8wkA2mWOzxefXE6THji4d6Xn15_-5zv6Sr9YeLfrGiRtTNRLVrQQpshJW2BguWG6Zk5wS3KBUyh51BuQXYIihXAGW2ijU1KmUa52pxXr06-e5TvDlgnobreCg_GfMAIFUHnHVQKH6iTIo5J3TDPvlvOs0DZ8N9EsMpiaEkMdwnMYiief3grLPRo0s6GJ__CKGVSjRSFg5OXC6rcIXp7wX_N_8NS8qbKQ</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Benadji, S.</creator><creator>Mazari, T.</creator><creator>Dermeche, L.</creator><creator>Salhi, N.</creator><creator>Cadot, E.</creator><creator>Rabia, C.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20130801</creationdate><title>Clean Alternative for Adipic Acid Synthesis Via Liquid-Phase Oxidation of Cyclohexanone and Cyclohexanol Over H3−2xCoxPMo12O40 Catalysts with Hydrogen Peroxide</title><author>Benadji, S. ; Mazari, T. ; Dermeche, L. ; Salhi, N. ; Cadot, E. ; Rabia, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-af7253e63d5d42d2d1c0859f31de58e0fe9ce5b22be28f2d28cb8064e88c6ff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Barium hydroxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cation exchanging</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cyclohexanone</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrogen peroxide</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Infrared analysis</topic><topic>Liquid phase oxidation</topic><topic>Organometallic Chemistry</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Polyoxometallates</topic><topic>Reflectance</topic><topic>Substrates</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benadji, S.</creatorcontrib><creatorcontrib>Mazari, T.</creatorcontrib><creatorcontrib>Dermeche, L.</creatorcontrib><creatorcontrib>Salhi, N.</creatorcontrib><creatorcontrib>Cadot, E.</creatorcontrib><creatorcontrib>Rabia, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benadji, S.</au><au>Mazari, T.</au><au>Dermeche, L.</au><au>Salhi, N.</au><au>Cadot, E.</au><au>Rabia, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clean Alternative for Adipic Acid Synthesis Via Liquid-Phase Oxidation of Cyclohexanone and Cyclohexanol Over H3−2xCoxPMo12O40 Catalysts with Hydrogen Peroxide</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>143</volume><issue>8</issue><spage>749</spage><epage>755</epage><pages>749-755</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>Adipic acid (AA) was synthesized from the oxidation of cyclohexanol (-ol), cyclohexanone (-one) and cyclohexanol/cyclohexanone (-ol/-one) mixture over a series of H 3−2x Co x PMo 12 O 40 (x: 0.0–1.5) Keggin-type polyoxometalates as catalysts in the presence of hydrogen peroxide (30 %) under mild conditions (90 °C, 20 h) and in solvent free. The heteropolysalts were prepared from H 3 PMo 12 O 40 and Ba(OH) 2 using the cationic exchange method and characterized by Infrared and diffuse reflectance UV–Vis spectroscopies, X-ray diffraction and TG analyses. The catalytic tests showed that salts are more efficient than the corresponding heteropolyacid and among the H 3−2x Co x PMo 12 O 40 (x: 0.25–1.5) series, H 1 Co 1 PMo 12 exhibits the highest AA yield for whole substrates, with ca. 76, 53 and 43 % from oxidation of -one, -ol and -ol/-one, respectively. Graphical Abstract</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10562-013-1025-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1011-372X
ispartof Catalysis letters, 2013-08, Vol.143 (8), p.749-755
issn 1011-372X
1572-879X
language eng
recordid cdi_proquest_journals_2258921092
source SpringerNature Journals
subjects Barium hydroxide
Catalysis
Catalysts
Cation exchanging
Chemistry
Chemistry and Materials Science
Cyclohexanone
Exact sciences and technology
General and physical chemistry
Hydrogen peroxide
Industrial Chemistry/Chemical Engineering
Infrared analysis
Liquid phase oxidation
Organometallic Chemistry
Oxidation
Physical Chemistry
Polyoxometallates
Reflectance
Substrates
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
X-ray diffraction
title Clean Alternative for Adipic Acid Synthesis Via Liquid-Phase Oxidation of Cyclohexanone and Cyclohexanol Over H3−2xCoxPMo12O40 Catalysts with Hydrogen Peroxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clean%20Alternative%20for%20Adipic%20Acid%20Synthesis%20Via%20Liquid-Phase%20Oxidation%20of%20Cyclohexanone%20and%20Cyclohexanol%20Over%20H3%E2%88%922xCoxPMo12O40%20Catalysts%20with%20Hydrogen%20Peroxide&rft.jtitle=Catalysis%20letters&rft.au=Benadji,%20S.&rft.date=2013-08-01&rft.volume=143&rft.issue=8&rft.spage=749&rft.epage=755&rft.pages=749-755&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-013-1025-3&rft_dat=%3Cproquest_cross%3E2258921092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258921092&rft_id=info:pmid/&rfr_iscdi=true