Preparation and Characterization of Mesoporous MoO3/TiO2 Composite with High Surface Area by Self-Supporting and Ammonia Method
A mesoporous MoO 3 /TiO 2 composite was prepared from titanate derivative by consecutive self-supporting and ammonia method. All samples were characterized by X-ray Diffraction, N 2 adsorption–desorption, Raman Spectra and Field-Emission Scanning Electron Microscopy. The results showed that mesoporo...
Gespeichert in:
Veröffentlicht in: | Catalysis letters 2012-04, Vol.142 (4), p.480-485 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 485 |
---|---|
container_issue | 4 |
container_start_page | 480 |
container_title | Catalysis letters |
container_volume | 142 |
creator | Li, Licheng Wang, Yanfang Shi, Kangzhong Chen, Shanshan Yang, Zhuhong Lu, Xiaohua |
description | A mesoporous MoO
3
/TiO
2
composite was prepared from titanate derivative by consecutive self-supporting and ammonia method. All samples were characterized by X-ray Diffraction, N
2
adsorption–desorption, Raman Spectra and Field-Emission Scanning Electron Microscopy. The results showed that mesoporous MoO
3
/TiO
2
composite had a higher surface area (173 m
2
/g) and a better MoO
3
dispersion than that prepared by traditional impregnation (90 m
2
/g). As for hydrodesulfurization tests, mesoporous MoO
3
/TiO
2
composite in this case presented a better catalytic performance, attributed to its high surface area and good dispersion of MoO
3
. It can be found that self-supporting played a key role in preparing mesoporous MoO
3
/TiO
2
composite with high surface area. Additionally, aqueous ammonia could effectively dissolve excess MoO
3
, which helped to obtain mesoporous MoO
3
/TiO
2
composite with better dispersion of MoO
3
.
Graphical Abstract |
doi_str_mv | 10.1007/s10562-012-0768-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2258920971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2258920971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-bda58a146591416848b25b385050d4d8c683b225c86fc271ea69b37f4f952b663</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYsoOKcfwLeA-FiXpM2fPo6hTtiYsAl7C2mbbBlbU5MWmS9-dVM79MmHkNzcc373cqLoFsEHBCEbeQQJxTFE4TDKY3oWDRBhOOYsW5-HN0QoThheX0ZX3u8ghBlD2SD6enWqlk42xlZAViWYbENVNMqZz_7TajBX3tbW2daDuV0ko5VZYDCxh9p60yjwYZotmJrNFixbp2WhwNgpCfIjWKq9jpdtHcyNqTY_A8aHg62MDNBma8vr6ELLvVc3p3sYvT09ribTeLZ4fpmMZ3GBGW3ivJSES5RSkqEUUZ7yHJM84QQSWKYlLyhPcoxJwakODqQkzfKE6VRnBOeUJsPorufWzr63yjdiZ1tXhZEi2HiGuzyCCvWqwlnvndKiduYg3VEgKLqcRZ-zCDmLLmfRke9PZOkLuddOVoXxv0ZMGMMpI0GHe50PrWqj3N8G_8O_AQWrjOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258920971</pqid></control><display><type>article</type><title>Preparation and Characterization of Mesoporous MoO3/TiO2 Composite with High Surface Area by Self-Supporting and Ammonia Method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Licheng ; Wang, Yanfang ; Shi, Kangzhong ; Chen, Shanshan ; Yang, Zhuhong ; Lu, Xiaohua</creator><creatorcontrib>Li, Licheng ; Wang, Yanfang ; Shi, Kangzhong ; Chen, Shanshan ; Yang, Zhuhong ; Lu, Xiaohua</creatorcontrib><description>A mesoporous MoO
3
/TiO
2
composite was prepared from titanate derivative by consecutive self-supporting and ammonia method. All samples were characterized by X-ray Diffraction, N
2
adsorption–desorption, Raman Spectra and Field-Emission Scanning Electron Microscopy. The results showed that mesoporous MoO
3
/TiO
2
composite had a higher surface area (173 m
2
/g) and a better MoO
3
dispersion than that prepared by traditional impregnation (90 m
2
/g). As for hydrodesulfurization tests, mesoporous MoO
3
/TiO
2
composite in this case presented a better catalytic performance, attributed to its high surface area and good dispersion of MoO
3
. It can be found that self-supporting played a key role in preparing mesoporous MoO
3
/TiO
2
composite with high surface area. Additionally, aqueous ammonia could effectively dissolve excess MoO
3
, which helped to obtain mesoporous MoO
3
/TiO
2
composite with better dispersion of MoO
3
.
Graphical Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-012-0768-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Ammonia ; Catalysis ; Chemistry ; Chemistry and Materials Science ; Colloidal state and disperse state ; Dispersion ; Emission spectra ; Exact sciences and technology ; General and physical chemistry ; Hydrodesulfurization ; Industrial Chemistry/Chemical Engineering ; Molybdenum oxides ; Molybdenum trioxide ; Organometallic Chemistry ; Physical Chemistry ; Porous materials ; Raman spectra ; Scanning electron microscopy ; Surface area ; Surface physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Titanium dioxide ; X-ray diffraction</subject><ispartof>Catalysis letters, 2012-04, Vol.142 (4), p.480-485</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>2015 INIST-CNRS</rights><rights>Catalysis Letters is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-bda58a146591416848b25b385050d4d8c683b225c86fc271ea69b37f4f952b663</citedby><cites>FETCH-LOGICAL-c276t-bda58a146591416848b25b385050d4d8c683b225c86fc271ea69b37f4f952b663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-012-0768-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-012-0768-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25772475$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Licheng</creatorcontrib><creatorcontrib>Wang, Yanfang</creatorcontrib><creatorcontrib>Shi, Kangzhong</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Yang, Zhuhong</creatorcontrib><creatorcontrib>Lu, Xiaohua</creatorcontrib><title>Preparation and Characterization of Mesoporous MoO3/TiO2 Composite with High Surface Area by Self-Supporting and Ammonia Method</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>A mesoporous MoO
3
/TiO
2
composite was prepared from titanate derivative by consecutive self-supporting and ammonia method. All samples were characterized by X-ray Diffraction, N
2
adsorption–desorption, Raman Spectra and Field-Emission Scanning Electron Microscopy. The results showed that mesoporous MoO
3
/TiO
2
composite had a higher surface area (173 m
2
/g) and a better MoO
3
dispersion than that prepared by traditional impregnation (90 m
2
/g). As for hydrodesulfurization tests, mesoporous MoO
3
/TiO
2
composite in this case presented a better catalytic performance, attributed to its high surface area and good dispersion of MoO
3
. It can be found that self-supporting played a key role in preparing mesoporous MoO
3
/TiO
2
composite with high surface area. Additionally, aqueous ammonia could effectively dissolve excess MoO
3
, which helped to obtain mesoporous MoO
3
/TiO
2
composite with better dispersion of MoO
3
.
Graphical Abstract</description><subject>Ammonia</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Colloidal state and disperse state</subject><subject>Dispersion</subject><subject>Emission spectra</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrodesulfurization</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Molybdenum oxides</subject><subject>Molybdenum trioxide</subject><subject>Organometallic Chemistry</subject><subject>Physical Chemistry</subject><subject>Porous materials</subject><subject>Raman spectra</subject><subject>Scanning electron microscopy</subject><subject>Surface area</subject><subject>Surface physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Titanium dioxide</subject><subject>X-ray diffraction</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kF9LwzAUxYsoOKcfwLeA-FiXpM2fPo6hTtiYsAl7C2mbbBlbU5MWmS9-dVM79MmHkNzcc373cqLoFsEHBCEbeQQJxTFE4TDKY3oWDRBhOOYsW5-HN0QoThheX0ZX3u8ghBlD2SD6enWqlk42xlZAViWYbENVNMqZz_7TajBX3tbW2daDuV0ko5VZYDCxh9p60yjwYZotmJrNFixbp2WhwNgpCfIjWKq9jpdtHcyNqTY_A8aHg62MDNBma8vr6ELLvVc3p3sYvT09ribTeLZ4fpmMZ3GBGW3ivJSES5RSkqEUUZ7yHJM84QQSWKYlLyhPcoxJwakODqQkzfKE6VRnBOeUJsPorufWzr63yjdiZ1tXhZEi2HiGuzyCCvWqwlnvndKiduYg3VEgKLqcRZ-zCDmLLmfRke9PZOkLuddOVoXxv0ZMGMMpI0GHe50PrWqj3N8G_8O_AQWrjOo</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Li, Licheng</creator><creator>Wang, Yanfang</creator><creator>Shi, Kangzhong</creator><creator>Chen, Shanshan</creator><creator>Yang, Zhuhong</creator><creator>Lu, Xiaohua</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20120401</creationdate><title>Preparation and Characterization of Mesoporous MoO3/TiO2 Composite with High Surface Area by Self-Supporting and Ammonia Method</title><author>Li, Licheng ; Wang, Yanfang ; Shi, Kangzhong ; Chen, Shanshan ; Yang, Zhuhong ; Lu, Xiaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-bda58a146591416848b25b385050d4d8c683b225c86fc271ea69b37f4f952b663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ammonia</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Colloidal state and disperse state</topic><topic>Dispersion</topic><topic>Emission spectra</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrodesulfurization</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Molybdenum oxides</topic><topic>Molybdenum trioxide</topic><topic>Organometallic Chemistry</topic><topic>Physical Chemistry</topic><topic>Porous materials</topic><topic>Raman spectra</topic><topic>Scanning electron microscopy</topic><topic>Surface area</topic><topic>Surface physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Titanium dioxide</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Licheng</creatorcontrib><creatorcontrib>Wang, Yanfang</creatorcontrib><creatorcontrib>Shi, Kangzhong</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Yang, Zhuhong</creatorcontrib><creatorcontrib>Lu, Xiaohua</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Licheng</au><au>Wang, Yanfang</au><au>Shi, Kangzhong</au><au>Chen, Shanshan</au><au>Yang, Zhuhong</au><au>Lu, Xiaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and Characterization of Mesoporous MoO3/TiO2 Composite with High Surface Area by Self-Supporting and Ammonia Method</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>142</volume><issue>4</issue><spage>480</spage><epage>485</epage><pages>480-485</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>A mesoporous MoO
3
/TiO
2
composite was prepared from titanate derivative by consecutive self-supporting and ammonia method. All samples were characterized by X-ray Diffraction, N
2
adsorption–desorption, Raman Spectra and Field-Emission Scanning Electron Microscopy. The results showed that mesoporous MoO
3
/TiO
2
composite had a higher surface area (173 m
2
/g) and a better MoO
3
dispersion than that prepared by traditional impregnation (90 m
2
/g). As for hydrodesulfurization tests, mesoporous MoO
3
/TiO
2
composite in this case presented a better catalytic performance, attributed to its high surface area and good dispersion of MoO
3
. It can be found that self-supporting played a key role in preparing mesoporous MoO
3
/TiO
2
composite with high surface area. Additionally, aqueous ammonia could effectively dissolve excess MoO
3
, which helped to obtain mesoporous MoO
3
/TiO
2
composite with better dispersion of MoO
3
.
Graphical Abstract</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10562-012-0768-6</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1011-372X |
ispartof | Catalysis letters, 2012-04, Vol.142 (4), p.480-485 |
issn | 1011-372X 1572-879X |
language | eng |
recordid | cdi_proquest_journals_2258920971 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ammonia Catalysis Chemistry Chemistry and Materials Science Colloidal state and disperse state Dispersion Emission spectra Exact sciences and technology General and physical chemistry Hydrodesulfurization Industrial Chemistry/Chemical Engineering Molybdenum oxides Molybdenum trioxide Organometallic Chemistry Physical Chemistry Porous materials Raman spectra Scanning electron microscopy Surface area Surface physical chemistry Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Titanium dioxide X-ray diffraction |
title | Preparation and Characterization of Mesoporous MoO3/TiO2 Composite with High Surface Area by Self-Supporting and Ammonia Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20Characterization%20of%20Mesoporous%20MoO3/TiO2%20Composite%20with%20High%20Surface%20Area%20by%20Self-Supporting%20and%20Ammonia%20Method&rft.jtitle=Catalysis%20letters&rft.au=Li,%20Licheng&rft.date=2012-04-01&rft.volume=142&rft.issue=4&rft.spage=480&rft.epage=485&rft.pages=480-485&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-012-0768-6&rft_dat=%3Cproquest_cross%3E2258920971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258920971&rft_id=info:pmid/&rfr_iscdi=true |