Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile
Acrylonitrile, a large tonnage chemical used in the polymer industry, may be produced by ammoxidation of acrolein, the latter being possibly obtained by glycerol dehydration. This would provide a green acrylonitrile synthesis as compared to the present industrial practice which involves ammoxidation...
Gespeichert in:
Veröffentlicht in: | Catalysis letters 2017-11, Vol.147 (11), p.2826-2834 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2834 |
---|---|
container_issue | 11 |
container_start_page | 2826 |
container_title | Catalysis letters |
container_volume | 147 |
creator | Thanh-Binh, Nguyen Dubois, Jean-Luc Kaliaguine, Serge |
description | Acrylonitrile, a large tonnage chemical used in the polymer industry, may be produced by ammoxidation of acrolein, the latter being possibly obtained by glycerol dehydration. This would provide a green acrylonitrile synthesis as compared to the present industrial practice which involves ammoxidation of propylene (or propane) of fossil origin. Traditionally, antimonate and molybdate based catalysts are used for propylene ammoxidation to acrylonitrile, and these catalysts should be also active for acrolein conversion. In this work, we report a simple method for synthesis of mixed antimonate and molybdate with various molar ratios supported on mesostructured silica in order to obtain highly porous and high specific surface area materials. The results indicate that molybdenum oxide plays a major role for the acrolein ammoxidation compared to antimony oxide. Acrolein conversion and acrylonitrile selectivity were reduced with increasing fraction of antimony oxide in the mixture. The catalysts were characterized by
N
2
physisorption, X-ray diffraction, Raman spectroscopy, thermal gravimetric analysis, inductively coupled plasma, transmission electron microscopy, X-ray photoelectron spectroscopy, and catalytic tests.
Graphical Abstract |
doi_str_mv | 10.1007/s10562-017-2171-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2258894587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A508895133</galeid><sourcerecordid>A508895133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-3c9250422a70153745356e819c5f74a76787ad15fdc9202f0a1d3148edaac7ee3</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhosoqKs_wFvAk4dqJm027bEsfiy6LPgBHoQQ2-kSaZM1ycL235ulguxBcsjAPE9myJskF0CvgVJx44HyKUspiJSBgLQ8SE6AC5YWonw_jDUFSDPB3o-TU--_KKWlgPIk-VjYbvhsVMCbygTdWxNLojx5xIEsMKiOLLe6QTJTsR588KS1jlS1sx1qQ6q-t7GvgraGBLtrDJ01Ojjd4Vly1KrO4_nvPUne7m5fZw_p0_J-Pque0jpn05Bmdck4zRlTggLPRM4zPsUCypq3IldiKgqhGuBtE0HKWqqgySAvsFGqFojZJLkc3107-71BH-SX3TgTR0rGeFGUOS9EpK5HaqU6lNq0NjhVx9Ngr2trsI0ry4rTKHDIsihc7QmRCbgNK7XxXs5fnvdZGNn4Md47bOXa6V65QQKVu4TkmJCMCcldQrKMDhsdH1mzQve39v_SD9KHkhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258894587</pqid></control><display><type>article</type><title>Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile</title><source>SpringerLink Journals - AutoHoldings</source><creator>Thanh-Binh, Nguyen ; Dubois, Jean-Luc ; Kaliaguine, Serge</creator><creatorcontrib>Thanh-Binh, Nguyen ; Dubois, Jean-Luc ; Kaliaguine, Serge</creatorcontrib><description>Acrylonitrile, a large tonnage chemical used in the polymer industry, may be produced by ammoxidation of acrolein, the latter being possibly obtained by glycerol dehydration. This would provide a green acrylonitrile synthesis as compared to the present industrial practice which involves ammoxidation of propylene (or propane) of fossil origin. Traditionally, antimonate and molybdate based catalysts are used for propylene ammoxidation to acrylonitrile, and these catalysts should be also active for acrolein conversion. In this work, we report a simple method for synthesis of mixed antimonate and molybdate with various molar ratios supported on mesostructured silica in order to obtain highly porous and high specific surface area materials. The results indicate that molybdenum oxide plays a major role for the acrolein ammoxidation compared to antimony oxide. Acrolein conversion and acrylonitrile selectivity were reduced with increasing fraction of antimony oxide in the mixture. The catalysts were characterized by
N
2
physisorption, X-ray diffraction, Raman spectroscopy, thermal gravimetric analysis, inductively coupled plasma, transmission electron microscopy, X-ray photoelectron spectroscopy, and catalytic tests.
Graphical Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-017-2171-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acrolein ; Acrylonitrile ; Antimony ; Antimony oxide ; Antimony oxides ; Catalysis ; Catalysts ; Chemical industry ; Chemistry ; Chemistry and Materials Science ; Comparative analysis ; Conversion ; Dehydration ; Glycerol ; Gravimetric analysis ; Inductively coupled plasma ; Industrial Chemistry/Chemical Engineering ; Molybdenum oxides ; Organic chemistry ; Organometallic Chemistry ; Photoelectrons ; Physical Chemistry ; Propylene ; Raman spectroscopy ; Selectivity ; Silicon dioxide ; Spectrum analysis ; Synthesis ; Tonnage ; Transmission electron microscopy ; X ray photoelectron spectroscopy ; X-ray diffraction ; X-ray spectroscopy</subject><ispartof>Catalysis letters, 2017-11, Vol.147 (11), p.2826-2834</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Catalysis Letters is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-3c9250422a70153745356e819c5f74a76787ad15fdc9202f0a1d3148edaac7ee3</citedby><cites>FETCH-LOGICAL-c426t-3c9250422a70153745356e819c5f74a76787ad15fdc9202f0a1d3148edaac7ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-017-2171-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-017-2171-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Thanh-Binh, Nguyen</creatorcontrib><creatorcontrib>Dubois, Jean-Luc</creatorcontrib><creatorcontrib>Kaliaguine, Serge</creatorcontrib><title>Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>Acrylonitrile, a large tonnage chemical used in the polymer industry, may be produced by ammoxidation of acrolein, the latter being possibly obtained by glycerol dehydration. This would provide a green acrylonitrile synthesis as compared to the present industrial practice which involves ammoxidation of propylene (or propane) of fossil origin. Traditionally, antimonate and molybdate based catalysts are used for propylene ammoxidation to acrylonitrile, and these catalysts should be also active for acrolein conversion. In this work, we report a simple method for synthesis of mixed antimonate and molybdate with various molar ratios supported on mesostructured silica in order to obtain highly porous and high specific surface area materials. The results indicate that molybdenum oxide plays a major role for the acrolein ammoxidation compared to antimony oxide. Acrolein conversion and acrylonitrile selectivity were reduced with increasing fraction of antimony oxide in the mixture. The catalysts were characterized by
N
2
physisorption, X-ray diffraction, Raman spectroscopy, thermal gravimetric analysis, inductively coupled plasma, transmission electron microscopy, X-ray photoelectron spectroscopy, and catalytic tests.
Graphical Abstract</description><subject>Acrolein</subject><subject>Acrylonitrile</subject><subject>Antimony</subject><subject>Antimony oxide</subject><subject>Antimony oxides</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical industry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Comparative analysis</subject><subject>Conversion</subject><subject>Dehydration</subject><subject>Glycerol</subject><subject>Gravimetric analysis</subject><subject>Inductively coupled plasma</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Molybdenum oxides</subject><subject>Organic chemistry</subject><subject>Organometallic Chemistry</subject><subject>Photoelectrons</subject><subject>Physical Chemistry</subject><subject>Propylene</subject><subject>Raman spectroscopy</subject><subject>Selectivity</subject><subject>Silicon dioxide</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><subject>Tonnage</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><subject>X-ray spectroscopy</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU1LxDAQhosoqKs_wFvAk4dqJm027bEsfiy6LPgBHoQQ2-kSaZM1ycL235ulguxBcsjAPE9myJskF0CvgVJx44HyKUspiJSBgLQ8SE6AC5YWonw_jDUFSDPB3o-TU--_KKWlgPIk-VjYbvhsVMCbygTdWxNLojx5xIEsMKiOLLe6QTJTsR588KS1jlS1sx1qQ6q-t7GvgraGBLtrDJ01Ojjd4Vly1KrO4_nvPUne7m5fZw_p0_J-Pque0jpn05Bmdck4zRlTggLPRM4zPsUCypq3IldiKgqhGuBtE0HKWqqgySAvsFGqFojZJLkc3107-71BH-SX3TgTR0rGeFGUOS9EpK5HaqU6lNq0NjhVx9Ngr2trsI0ry4rTKHDIsihc7QmRCbgNK7XxXs5fnvdZGNn4Md47bOXa6V65QQKVu4TkmJCMCcldQrKMDhsdH1mzQve39v_SD9KHkhs</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Thanh-Binh, Nguyen</creator><creator>Dubois, Jean-Luc</creator><creator>Kaliaguine, Serge</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20171101</creationdate><title>Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile</title><author>Thanh-Binh, Nguyen ; Dubois, Jean-Luc ; Kaliaguine, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-3c9250422a70153745356e819c5f74a76787ad15fdc9202f0a1d3148edaac7ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acrolein</topic><topic>Acrylonitrile</topic><topic>Antimony</topic><topic>Antimony oxide</topic><topic>Antimony oxides</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical industry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Comparative analysis</topic><topic>Conversion</topic><topic>Dehydration</topic><topic>Glycerol</topic><topic>Gravimetric analysis</topic><topic>Inductively coupled plasma</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Molybdenum oxides</topic><topic>Organic chemistry</topic><topic>Organometallic Chemistry</topic><topic>Photoelectrons</topic><topic>Physical Chemistry</topic><topic>Propylene</topic><topic>Raman spectroscopy</topic><topic>Selectivity</topic><topic>Silicon dioxide</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><topic>Tonnage</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thanh-Binh, Nguyen</creatorcontrib><creatorcontrib>Dubois, Jean-Luc</creatorcontrib><creatorcontrib>Kaliaguine, Serge</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thanh-Binh, Nguyen</au><au>Dubois, Jean-Luc</au><au>Kaliaguine, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>147</volume><issue>11</issue><spage>2826</spage><epage>2834</epage><pages>2826-2834</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>Acrylonitrile, a large tonnage chemical used in the polymer industry, may be produced by ammoxidation of acrolein, the latter being possibly obtained by glycerol dehydration. This would provide a green acrylonitrile synthesis as compared to the present industrial practice which involves ammoxidation of propylene (or propane) of fossil origin. Traditionally, antimonate and molybdate based catalysts are used for propylene ammoxidation to acrylonitrile, and these catalysts should be also active for acrolein conversion. In this work, we report a simple method for synthesis of mixed antimonate and molybdate with various molar ratios supported on mesostructured silica in order to obtain highly porous and high specific surface area materials. The results indicate that molybdenum oxide plays a major role for the acrolein ammoxidation compared to antimony oxide. Acrolein conversion and acrylonitrile selectivity were reduced with increasing fraction of antimony oxide in the mixture. The catalysts were characterized by
N
2
physisorption, X-ray diffraction, Raman spectroscopy, thermal gravimetric analysis, inductively coupled plasma, transmission electron microscopy, X-ray photoelectron spectroscopy, and catalytic tests.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-017-2171-9</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1011-372X |
ispartof | Catalysis letters, 2017-11, Vol.147 (11), p.2826-2834 |
issn | 1011-372X 1572-879X |
language | eng |
recordid | cdi_proquest_journals_2258894587 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acrolein Acrylonitrile Antimony Antimony oxide Antimony oxides Catalysis Catalysts Chemical industry Chemistry Chemistry and Materials Science Comparative analysis Conversion Dehydration Glycerol Gravimetric analysis Inductively coupled plasma Industrial Chemistry/Chemical Engineering Molybdenum oxides Organic chemistry Organometallic Chemistry Photoelectrons Physical Chemistry Propylene Raman spectroscopy Selectivity Silicon dioxide Spectrum analysis Synthesis Tonnage Transmission electron microscopy X ray photoelectron spectroscopy X-ray diffraction X-ray spectroscopy |
title | Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molybdate/Antimonate%20as%20Key%20Metal%20Oxide%20Catalysts%20for%20Acrolein%20Ammoxidation%20to%20Acrylonitrile&rft.jtitle=Catalysis%20letters&rft.au=Thanh-Binh,%20Nguyen&rft.date=2017-11-01&rft.volume=147&rft.issue=11&rft.spage=2826&rft.epage=2834&rft.pages=2826-2834&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-017-2171-9&rft_dat=%3Cgale_proqu%3EA508895133%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258894587&rft_id=info:pmid/&rft_galeid=A508895133&rfr_iscdi=true |