Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile

Acrylonitrile, a large tonnage chemical used in the polymer industry, may be produced by ammoxidation of acrolein, the latter being possibly obtained by glycerol dehydration. This would provide a green acrylonitrile synthesis as compared to the present industrial practice which involves ammoxidation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis letters 2017-11, Vol.147 (11), p.2826-2834
Hauptverfasser: Thanh-Binh, Nguyen, Dubois, Jean-Luc, Kaliaguine, Serge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2834
container_issue 11
container_start_page 2826
container_title Catalysis letters
container_volume 147
creator Thanh-Binh, Nguyen
Dubois, Jean-Luc
Kaliaguine, Serge
description Acrylonitrile, a large tonnage chemical used in the polymer industry, may be produced by ammoxidation of acrolein, the latter being possibly obtained by glycerol dehydration. This would provide a green acrylonitrile synthesis as compared to the present industrial practice which involves ammoxidation of propylene (or propane) of fossil origin. Traditionally, antimonate and molybdate based catalysts are used for propylene ammoxidation to acrylonitrile, and these catalysts should be also active for acrolein conversion. In this work, we report a simple method for synthesis of mixed antimonate and molybdate with various molar ratios supported on mesostructured silica in order to obtain highly porous and high specific surface area materials. The results indicate that molybdenum oxide plays a major role for the acrolein ammoxidation compared to antimony oxide. Acrolein conversion and acrylonitrile selectivity were reduced with increasing fraction of antimony oxide in the mixture. The catalysts were characterized by N 2 physisorption, X-ray diffraction, Raman spectroscopy, thermal gravimetric analysis, inductively coupled plasma, transmission electron microscopy, X-ray photoelectron spectroscopy, and catalytic tests. Graphical Abstract
doi_str_mv 10.1007/s10562-017-2171-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2258894587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A508895133</galeid><sourcerecordid>A508895133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-3c9250422a70153745356e819c5f74a76787ad15fdc9202f0a1d3148edaac7ee3</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhosoqKs_wFvAk4dqJm027bEsfiy6LPgBHoQQ2-kSaZM1ycL235ulguxBcsjAPE9myJskF0CvgVJx44HyKUspiJSBgLQ8SE6AC5YWonw_jDUFSDPB3o-TU--_KKWlgPIk-VjYbvhsVMCbygTdWxNLojx5xIEsMKiOLLe6QTJTsR588KS1jlS1sx1qQ6q-t7GvgraGBLtrDJ01Ojjd4Vly1KrO4_nvPUne7m5fZw_p0_J-Pque0jpn05Bmdck4zRlTggLPRM4zPsUCypq3IldiKgqhGuBtE0HKWqqgySAvsFGqFojZJLkc3107-71BH-SX3TgTR0rGeFGUOS9EpK5HaqU6lNq0NjhVx9Ngr2trsI0ry4rTKHDIsihc7QmRCbgNK7XxXs5fnvdZGNn4Md47bOXa6V65QQKVu4TkmJCMCcldQrKMDhsdH1mzQve39v_SD9KHkhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258894587</pqid></control><display><type>article</type><title>Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile</title><source>SpringerLink Journals - AutoHoldings</source><creator>Thanh-Binh, Nguyen ; Dubois, Jean-Luc ; Kaliaguine, Serge</creator><creatorcontrib>Thanh-Binh, Nguyen ; Dubois, Jean-Luc ; Kaliaguine, Serge</creatorcontrib><description>Acrylonitrile, a large tonnage chemical used in the polymer industry, may be produced by ammoxidation of acrolein, the latter being possibly obtained by glycerol dehydration. This would provide a green acrylonitrile synthesis as compared to the present industrial practice which involves ammoxidation of propylene (or propane) of fossil origin. Traditionally, antimonate and molybdate based catalysts are used for propylene ammoxidation to acrylonitrile, and these catalysts should be also active for acrolein conversion. In this work, we report a simple method for synthesis of mixed antimonate and molybdate with various molar ratios supported on mesostructured silica in order to obtain highly porous and high specific surface area materials. The results indicate that molybdenum oxide plays a major role for the acrolein ammoxidation compared to antimony oxide. Acrolein conversion and acrylonitrile selectivity were reduced with increasing fraction of antimony oxide in the mixture. The catalysts were characterized by N 2 physisorption, X-ray diffraction, Raman spectroscopy, thermal gravimetric analysis, inductively coupled plasma, transmission electron microscopy, X-ray photoelectron spectroscopy, and catalytic tests. Graphical Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-017-2171-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acrolein ; Acrylonitrile ; Antimony ; Antimony oxide ; Antimony oxides ; Catalysis ; Catalysts ; Chemical industry ; Chemistry ; Chemistry and Materials Science ; Comparative analysis ; Conversion ; Dehydration ; Glycerol ; Gravimetric analysis ; Inductively coupled plasma ; Industrial Chemistry/Chemical Engineering ; Molybdenum oxides ; Organic chemistry ; Organometallic Chemistry ; Photoelectrons ; Physical Chemistry ; Propylene ; Raman spectroscopy ; Selectivity ; Silicon dioxide ; Spectrum analysis ; Synthesis ; Tonnage ; Transmission electron microscopy ; X ray photoelectron spectroscopy ; X-ray diffraction ; X-ray spectroscopy</subject><ispartof>Catalysis letters, 2017-11, Vol.147 (11), p.2826-2834</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Catalysis Letters is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-3c9250422a70153745356e819c5f74a76787ad15fdc9202f0a1d3148edaac7ee3</citedby><cites>FETCH-LOGICAL-c426t-3c9250422a70153745356e819c5f74a76787ad15fdc9202f0a1d3148edaac7ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-017-2171-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-017-2171-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Thanh-Binh, Nguyen</creatorcontrib><creatorcontrib>Dubois, Jean-Luc</creatorcontrib><creatorcontrib>Kaliaguine, Serge</creatorcontrib><title>Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>Acrylonitrile, a large tonnage chemical used in the polymer industry, may be produced by ammoxidation of acrolein, the latter being possibly obtained by glycerol dehydration. This would provide a green acrylonitrile synthesis as compared to the present industrial practice which involves ammoxidation of propylene (or propane) of fossil origin. Traditionally, antimonate and molybdate based catalysts are used for propylene ammoxidation to acrylonitrile, and these catalysts should be also active for acrolein conversion. In this work, we report a simple method for synthesis of mixed antimonate and molybdate with various molar ratios supported on mesostructured silica in order to obtain highly porous and high specific surface area materials. The results indicate that molybdenum oxide plays a major role for the acrolein ammoxidation compared to antimony oxide. Acrolein conversion and acrylonitrile selectivity were reduced with increasing fraction of antimony oxide in the mixture. The catalysts were characterized by N 2 physisorption, X-ray diffraction, Raman spectroscopy, thermal gravimetric analysis, inductively coupled plasma, transmission electron microscopy, X-ray photoelectron spectroscopy, and catalytic tests. Graphical Abstract</description><subject>Acrolein</subject><subject>Acrylonitrile</subject><subject>Antimony</subject><subject>Antimony oxide</subject><subject>Antimony oxides</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical industry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Comparative analysis</subject><subject>Conversion</subject><subject>Dehydration</subject><subject>Glycerol</subject><subject>Gravimetric analysis</subject><subject>Inductively coupled plasma</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Molybdenum oxides</subject><subject>Organic chemistry</subject><subject>Organometallic Chemistry</subject><subject>Photoelectrons</subject><subject>Physical Chemistry</subject><subject>Propylene</subject><subject>Raman spectroscopy</subject><subject>Selectivity</subject><subject>Silicon dioxide</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><subject>Tonnage</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><subject>X-ray spectroscopy</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU1LxDAQhosoqKs_wFvAk4dqJm027bEsfiy6LPgBHoQQ2-kSaZM1ycL235ulguxBcsjAPE9myJskF0CvgVJx44HyKUspiJSBgLQ8SE6AC5YWonw_jDUFSDPB3o-TU--_KKWlgPIk-VjYbvhsVMCbygTdWxNLojx5xIEsMKiOLLe6QTJTsR588KS1jlS1sx1qQ6q-t7GvgraGBLtrDJ01Ojjd4Vly1KrO4_nvPUne7m5fZw_p0_J-Pque0jpn05Bmdck4zRlTggLPRM4zPsUCypq3IldiKgqhGuBtE0HKWqqgySAvsFGqFojZJLkc3107-71BH-SX3TgTR0rGeFGUOS9EpK5HaqU6lNq0NjhVx9Ngr2trsI0ry4rTKHDIsihc7QmRCbgNK7XxXs5fnvdZGNn4Md47bOXa6V65QQKVu4TkmJCMCcldQrKMDhsdH1mzQve39v_SD9KHkhs</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Thanh-Binh, Nguyen</creator><creator>Dubois, Jean-Luc</creator><creator>Kaliaguine, Serge</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20171101</creationdate><title>Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile</title><author>Thanh-Binh, Nguyen ; Dubois, Jean-Luc ; Kaliaguine, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-3c9250422a70153745356e819c5f74a76787ad15fdc9202f0a1d3148edaac7ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acrolein</topic><topic>Acrylonitrile</topic><topic>Antimony</topic><topic>Antimony oxide</topic><topic>Antimony oxides</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical industry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Comparative analysis</topic><topic>Conversion</topic><topic>Dehydration</topic><topic>Glycerol</topic><topic>Gravimetric analysis</topic><topic>Inductively coupled plasma</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Molybdenum oxides</topic><topic>Organic chemistry</topic><topic>Organometallic Chemistry</topic><topic>Photoelectrons</topic><topic>Physical Chemistry</topic><topic>Propylene</topic><topic>Raman spectroscopy</topic><topic>Selectivity</topic><topic>Silicon dioxide</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><topic>Tonnage</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thanh-Binh, Nguyen</creatorcontrib><creatorcontrib>Dubois, Jean-Luc</creatorcontrib><creatorcontrib>Kaliaguine, Serge</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thanh-Binh, Nguyen</au><au>Dubois, Jean-Luc</au><au>Kaliaguine, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>147</volume><issue>11</issue><spage>2826</spage><epage>2834</epage><pages>2826-2834</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>Acrylonitrile, a large tonnage chemical used in the polymer industry, may be produced by ammoxidation of acrolein, the latter being possibly obtained by glycerol dehydration. This would provide a green acrylonitrile synthesis as compared to the present industrial practice which involves ammoxidation of propylene (or propane) of fossil origin. Traditionally, antimonate and molybdate based catalysts are used for propylene ammoxidation to acrylonitrile, and these catalysts should be also active for acrolein conversion. In this work, we report a simple method for synthesis of mixed antimonate and molybdate with various molar ratios supported on mesostructured silica in order to obtain highly porous and high specific surface area materials. The results indicate that molybdenum oxide plays a major role for the acrolein ammoxidation compared to antimony oxide. Acrolein conversion and acrylonitrile selectivity were reduced with increasing fraction of antimony oxide in the mixture. The catalysts were characterized by N 2 physisorption, X-ray diffraction, Raman spectroscopy, thermal gravimetric analysis, inductively coupled plasma, transmission electron microscopy, X-ray photoelectron spectroscopy, and catalytic tests. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-017-2171-9</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1011-372X
ispartof Catalysis letters, 2017-11, Vol.147 (11), p.2826-2834
issn 1011-372X
1572-879X
language eng
recordid cdi_proquest_journals_2258894587
source SpringerLink Journals - AutoHoldings
subjects Acrolein
Acrylonitrile
Antimony
Antimony oxide
Antimony oxides
Catalysis
Catalysts
Chemical industry
Chemistry
Chemistry and Materials Science
Comparative analysis
Conversion
Dehydration
Glycerol
Gravimetric analysis
Inductively coupled plasma
Industrial Chemistry/Chemical Engineering
Molybdenum oxides
Organic chemistry
Organometallic Chemistry
Photoelectrons
Physical Chemistry
Propylene
Raman spectroscopy
Selectivity
Silicon dioxide
Spectrum analysis
Synthesis
Tonnage
Transmission electron microscopy
X ray photoelectron spectroscopy
X-ray diffraction
X-ray spectroscopy
title Molybdate/Antimonate as Key Metal Oxide Catalysts for Acrolein Ammoxidation to Acrylonitrile
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molybdate/Antimonate%20as%20Key%20Metal%20Oxide%20Catalysts%20for%20Acrolein%20Ammoxidation%20to%20Acrylonitrile&rft.jtitle=Catalysis%20letters&rft.au=Thanh-Binh,%20Nguyen&rft.date=2017-11-01&rft.volume=147&rft.issue=11&rft.spage=2826&rft.epage=2834&rft.pages=2826-2834&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-017-2171-9&rft_dat=%3Cgale_proqu%3EA508895133%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258894587&rft_id=info:pmid/&rft_galeid=A508895133&rfr_iscdi=true