Soot Oxidation Activity of Redox and Non-Redox Metal Oxides Synthesised by EDTA–Citrate Method
In the present study, redox (CeO 2 , SnO 2 , Pr 6 O 11 and Mn 3 O 4 ) and non-redox (Gd 2 O 3 , La 2 O 3 ZrO 2 and HfO 2 ) metal oxides were successfully synthesised using the EDTA–citrate complexing method and tested for soot oxidation activity. The characterization of the metal oxides is carried o...
Gespeichert in:
Veröffentlicht in: | Catalysis letters 2017-12, Vol.147 (12), p.3004-3016 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3016 |
---|---|
container_issue | 12 |
container_start_page | 3004 |
container_title | Catalysis letters |
container_volume | 147 |
creator | Anantharaman, Anjana P. Dasari, Hari Prasad Lee, Jong-Ho Dasari, Harshini Babu, G. Uday Bhaskar |
description | In the present study, redox (CeO
2
, SnO
2
, Pr
6
O
11
and Mn
3
O
4
) and non-redox (Gd
2
O
3
, La
2
O
3
ZrO
2
and HfO
2
) metal oxides were successfully synthesised using the EDTA–citrate complexing method and tested for soot oxidation activity. The characterization of the metal oxides is carried out using FTIR, XRD, BET surface area, pore volume analyser, SEM and TEM. The redox nature and metal–oxygen bond information of the metal oxides are obtained from XPS analysis. In redox metal oxides, three critical parameters [lattice oxygen binding energy, reduction temperature and Δr (ionic size difference of the corresponding metal oxide oxidation states)] govern the soot oxidation activity. Among the redox metal oxide samples, Mn
3
O
4
and Pr
6
O
11
samples showed lower binding energy for oxygen (O
β
—529.4, 528.9 eV respectively), lower reduction temperature (T
α
—317 and 512 °C respectively) and have smaller Δr value (9 pm and 17 pm respectively). Thus, displayed a better soot oxidation activity (T
50
= 484 and 482 °C respectively) than compared to other redox metal oxides. Among the non-redox metal oxides, HfO
2
sample displayed higher BET surface area (21.06 m
2
/g), lattice strain (0.0157), smaller ionic radius (58.2 pm) and higher relative surface oxygen ratio (58%) and thus resulted in a significantly better soot oxidation activity (T
50
= 483 °C) than compared to other non-redox metal oxides.
Graphical Abstract |
doi_str_mv | 10.1007/s10562-017-2181-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2258891509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513923819</galeid><sourcerecordid>A513923819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-caf2dfe19f902f2bf1658376037a33acf0e2909653fa74c76929fa64466718c13</originalsourceid><addsrcrecordid>eNp1kctOAyEUhidGE68P4I7ElQsqBzowLJt6TaomrSbuEBmomDroQE278x18Q59E6pgYF-YsOJDvO5zkL4p9ID0gRBxFICWnmIDAFCrAYq3YglJQXAl5t557AoCZoHebxXaMT4QQKUBuFfeTEBK6XvhaJx8aNDDJv_m0RMGhsa3DAummRlehwd3t0iY9--ZtRJNlkx5t9NHW6GGJTo5vBp_vH0OfWp3sCn0M9W6x4fQs2r2fc6e4PT25GZ7j0fXZxXAwwqZPecJGO1o7C9JJQh19cMDLiglOmNCMaeOIpZJIXjKnRd8ILql0mvf7nAuoDLCd4qCb-9KG17mNST2FedvkLxWlZVVJKInMVK-jpnpmlW9cyLuaXLV99iY01vn8PiiBScoqWAmHf4TMJLtIUz2PUV1Mxn9Z6FjThhhb69RL6591u1RA1Col1aWkckpqlZIS2aGdEzPbTG37u_b_0hdno5NW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258891509</pqid></control><display><type>article</type><title>Soot Oxidation Activity of Redox and Non-Redox Metal Oxides Synthesised by EDTA–Citrate Method</title><source>SpringerNature Journals</source><creator>Anantharaman, Anjana P. ; Dasari, Hari Prasad ; Lee, Jong-Ho ; Dasari, Harshini ; Babu, G. Uday Bhaskar</creator><creatorcontrib>Anantharaman, Anjana P. ; Dasari, Hari Prasad ; Lee, Jong-Ho ; Dasari, Harshini ; Babu, G. Uday Bhaskar</creatorcontrib><description>In the present study, redox (CeO
2
, SnO
2
, Pr
6
O
11
and Mn
3
O
4
) and non-redox (Gd
2
O
3
, La
2
O
3
ZrO
2
and HfO
2
) metal oxides were successfully synthesised using the EDTA–citrate complexing method and tested for soot oxidation activity. The characterization of the metal oxides is carried out using FTIR, XRD, BET surface area, pore volume analyser, SEM and TEM. The redox nature and metal–oxygen bond information of the metal oxides are obtained from XPS analysis. In redox metal oxides, three critical parameters [lattice oxygen binding energy, reduction temperature and Δr (ionic size difference of the corresponding metal oxide oxidation states)] govern the soot oxidation activity. Among the redox metal oxide samples, Mn
3
O
4
and Pr
6
O
11
samples showed lower binding energy for oxygen (O
β
—529.4, 528.9 eV respectively), lower reduction temperature (T
α
—317 and 512 °C respectively) and have smaller Δr value (9 pm and 17 pm respectively). Thus, displayed a better soot oxidation activity (T
50
= 484 and 482 °C respectively) than compared to other redox metal oxides. Among the non-redox metal oxides, HfO
2
sample displayed higher BET surface area (21.06 m
2
/g), lattice strain (0.0157), smaller ionic radius (58.2 pm) and higher relative surface oxygen ratio (58%) and thus resulted in a significantly better soot oxidation activity (T
50
= 483 °C) than compared to other non-redox metal oxides.
Graphical Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-017-2181-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Binding energy ; Catalysis ; Cerium oxides ; Chemistry ; Chemistry and Materials Science ; Energy (Physics) ; Ethylenediaminetetraacetic acids ; Gadolinium oxides ; Hafnium oxide ; Industrial Chemistry/Chemical Engineering ; Lanthanum oxides ; Lattice strain ; Manganese oxides ; Metal oxides ; Metals (Materials) ; Methods ; Organometallic Chemistry ; Oxidation ; Oxidation-reduction reactions ; Oxides ; Oxygen ; Physical Chemistry ; Praseodymium oxide ; Reduction ; Soot ; Surface area ; Tin dioxide ; X ray photoelectron spectroscopy ; Zirconium dioxide</subject><ispartof>Catalysis letters, 2017-12, Vol.147 (12), p.3004-3016</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Catalysis Letters is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-caf2dfe19f902f2bf1658376037a33acf0e2909653fa74c76929fa64466718c13</citedby><cites>FETCH-LOGICAL-c426t-caf2dfe19f902f2bf1658376037a33acf0e2909653fa74c76929fa64466718c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-017-2181-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-017-2181-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Anantharaman, Anjana P.</creatorcontrib><creatorcontrib>Dasari, Hari Prasad</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Dasari, Harshini</creatorcontrib><creatorcontrib>Babu, G. Uday Bhaskar</creatorcontrib><title>Soot Oxidation Activity of Redox and Non-Redox Metal Oxides Synthesised by EDTA–Citrate Method</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>In the present study, redox (CeO
2
, SnO
2
, Pr
6
O
11
and Mn
3
O
4
) and non-redox (Gd
2
O
3
, La
2
O
3
ZrO
2
and HfO
2
) metal oxides were successfully synthesised using the EDTA–citrate complexing method and tested for soot oxidation activity. The characterization of the metal oxides is carried out using FTIR, XRD, BET surface area, pore volume analyser, SEM and TEM. The redox nature and metal–oxygen bond information of the metal oxides are obtained from XPS analysis. In redox metal oxides, three critical parameters [lattice oxygen binding energy, reduction temperature and Δr (ionic size difference of the corresponding metal oxide oxidation states)] govern the soot oxidation activity. Among the redox metal oxide samples, Mn
3
O
4
and Pr
6
O
11
samples showed lower binding energy for oxygen (O
β
—529.4, 528.9 eV respectively), lower reduction temperature (T
α
—317 and 512 °C respectively) and have smaller Δr value (9 pm and 17 pm respectively). Thus, displayed a better soot oxidation activity (T
50
= 484 and 482 °C respectively) than compared to other redox metal oxides. Among the non-redox metal oxides, HfO
2
sample displayed higher BET surface area (21.06 m
2
/g), lattice strain (0.0157), smaller ionic radius (58.2 pm) and higher relative surface oxygen ratio (58%) and thus resulted in a significantly better soot oxidation activity (T
50
= 483 °C) than compared to other non-redox metal oxides.
Graphical Abstract</description><subject>Analysis</subject><subject>Binding energy</subject><subject>Catalysis</subject><subject>Cerium oxides</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Energy (Physics)</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Gadolinium oxides</subject><subject>Hafnium oxide</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Lanthanum oxides</subject><subject>Lattice strain</subject><subject>Manganese oxides</subject><subject>Metal oxides</subject><subject>Metals (Materials)</subject><subject>Methods</subject><subject>Organometallic Chemistry</subject><subject>Oxidation</subject><subject>Oxidation-reduction reactions</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Physical Chemistry</subject><subject>Praseodymium oxide</subject><subject>Reduction</subject><subject>Soot</subject><subject>Surface area</subject><subject>Tin dioxide</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zirconium dioxide</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kctOAyEUhidGE68P4I7ElQsqBzowLJt6TaomrSbuEBmomDroQE278x18Q59E6pgYF-YsOJDvO5zkL4p9ID0gRBxFICWnmIDAFCrAYq3YglJQXAl5t557AoCZoHebxXaMT4QQKUBuFfeTEBK6XvhaJx8aNDDJv_m0RMGhsa3DAummRlehwd3t0iY9--ZtRJNlkx5t9NHW6GGJTo5vBp_vH0OfWp3sCn0M9W6x4fQs2r2fc6e4PT25GZ7j0fXZxXAwwqZPecJGO1o7C9JJQh19cMDLiglOmNCMaeOIpZJIXjKnRd8ILql0mvf7nAuoDLCd4qCb-9KG17mNST2FedvkLxWlZVVJKInMVK-jpnpmlW9cyLuaXLV99iY01vn8PiiBScoqWAmHf4TMJLtIUz2PUV1Mxn9Z6FjThhhb69RL6591u1RA1Col1aWkckpqlZIS2aGdEzPbTG37u_b_0hdno5NW</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Anantharaman, Anjana P.</creator><creator>Dasari, Hari Prasad</creator><creator>Lee, Jong-Ho</creator><creator>Dasari, Harshini</creator><creator>Babu, G. Uday Bhaskar</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20171201</creationdate><title>Soot Oxidation Activity of Redox and Non-Redox Metal Oxides Synthesised by EDTA–Citrate Method</title><author>Anantharaman, Anjana P. ; Dasari, Hari Prasad ; Lee, Jong-Ho ; Dasari, Harshini ; Babu, G. Uday Bhaskar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-caf2dfe19f902f2bf1658376037a33acf0e2909653fa74c76929fa64466718c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Binding energy</topic><topic>Catalysis</topic><topic>Cerium oxides</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Energy (Physics)</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Gadolinium oxides</topic><topic>Hafnium oxide</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Lanthanum oxides</topic><topic>Lattice strain</topic><topic>Manganese oxides</topic><topic>Metal oxides</topic><topic>Metals (Materials)</topic><topic>Methods</topic><topic>Organometallic Chemistry</topic><topic>Oxidation</topic><topic>Oxidation-reduction reactions</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Physical Chemistry</topic><topic>Praseodymium oxide</topic><topic>Reduction</topic><topic>Soot</topic><topic>Surface area</topic><topic>Tin dioxide</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anantharaman, Anjana P.</creatorcontrib><creatorcontrib>Dasari, Hari Prasad</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Dasari, Harshini</creatorcontrib><creatorcontrib>Babu, G. Uday Bhaskar</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anantharaman, Anjana P.</au><au>Dasari, Hari Prasad</au><au>Lee, Jong-Ho</au><au>Dasari, Harshini</au><au>Babu, G. Uday Bhaskar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soot Oxidation Activity of Redox and Non-Redox Metal Oxides Synthesised by EDTA–Citrate Method</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>147</volume><issue>12</issue><spage>3004</spage><epage>3016</epage><pages>3004-3016</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>In the present study, redox (CeO
2
, SnO
2
, Pr
6
O
11
and Mn
3
O
4
) and non-redox (Gd
2
O
3
, La
2
O
3
ZrO
2
and HfO
2
) metal oxides were successfully synthesised using the EDTA–citrate complexing method and tested for soot oxidation activity. The characterization of the metal oxides is carried out using FTIR, XRD, BET surface area, pore volume analyser, SEM and TEM. The redox nature and metal–oxygen bond information of the metal oxides are obtained from XPS analysis. In redox metal oxides, three critical parameters [lattice oxygen binding energy, reduction temperature and Δr (ionic size difference of the corresponding metal oxide oxidation states)] govern the soot oxidation activity. Among the redox metal oxide samples, Mn
3
O
4
and Pr
6
O
11
samples showed lower binding energy for oxygen (O
β
—529.4, 528.9 eV respectively), lower reduction temperature (T
α
—317 and 512 °C respectively) and have smaller Δr value (9 pm and 17 pm respectively). Thus, displayed a better soot oxidation activity (T
50
= 484 and 482 °C respectively) than compared to other redox metal oxides. Among the non-redox metal oxides, HfO
2
sample displayed higher BET surface area (21.06 m
2
/g), lattice strain (0.0157), smaller ionic radius (58.2 pm) and higher relative surface oxygen ratio (58%) and thus resulted in a significantly better soot oxidation activity (T
50
= 483 °C) than compared to other non-redox metal oxides.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-017-2181-7</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1011-372X |
ispartof | Catalysis letters, 2017-12, Vol.147 (12), p.3004-3016 |
issn | 1011-372X 1572-879X |
language | eng |
recordid | cdi_proquest_journals_2258891509 |
source | SpringerNature Journals |
subjects | Analysis Binding energy Catalysis Cerium oxides Chemistry Chemistry and Materials Science Energy (Physics) Ethylenediaminetetraacetic acids Gadolinium oxides Hafnium oxide Industrial Chemistry/Chemical Engineering Lanthanum oxides Lattice strain Manganese oxides Metal oxides Metals (Materials) Methods Organometallic Chemistry Oxidation Oxidation-reduction reactions Oxides Oxygen Physical Chemistry Praseodymium oxide Reduction Soot Surface area Tin dioxide X ray photoelectron spectroscopy Zirconium dioxide |
title | Soot Oxidation Activity of Redox and Non-Redox Metal Oxides Synthesised by EDTA–Citrate Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soot%20Oxidation%20Activity%20of%20Redox%20and%20Non-Redox%20Metal%20Oxides%20Synthesised%20by%20EDTA%E2%80%93Citrate%20Method&rft.jtitle=Catalysis%20letters&rft.au=Anantharaman,%20Anjana%20P.&rft.date=2017-12-01&rft.volume=147&rft.issue=12&rft.spage=3004&rft.epage=3016&rft.pages=3004-3016&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-017-2181-7&rft_dat=%3Cgale_proqu%3EA513923819%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258891509&rft_id=info:pmid/&rft_galeid=A513923819&rfr_iscdi=true |