Influence of steel cleanliness and heat treatment conditions on rolling contact fatigue of 100Cr6

The aim of this work is to determine the rolling contact fatigue (RCF) strength of steel AISI 52100 (DIN 100Cr6) as a common bearing steel in different heat treated conditions. In order to study and evaluate the steel cleanliness and its influence on the fatigue behavior the results are compared to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wear 2019-07, Vol.430-431, p.272-279
Hauptverfasser: Oezel, M., Janitzky, T., Beiss, P., Broeckmann, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue
container_start_page 272
container_title Wear
container_volume 430-431
creator Oezel, M.
Janitzky, T.
Beiss, P.
Broeckmann, C.
description The aim of this work is to determine the rolling contact fatigue (RCF) strength of steel AISI 52100 (DIN 100Cr6) as a common bearing steel in different heat treated conditions. In order to study and evaluate the steel cleanliness and its influence on the fatigue behavior the results are compared to AISI L3 (DIN 102Cr6) as a cold-working tool steel containing higher amounts of non-metallic inclusions as a consequence of a different metallurgical processing. In this work experimental results obtained from both materials with martensitic and bainitic microstructures are presented. In addition, the inclusion content in each material was analyzed using extreme value statistics, and the endurance limits are predicted based on the maximum expected inclusion in the maximum loaded volume as a critical crack initiating defect. The predicted RCF values are in good agreement with the experimental results. Irrespective of the microstructure, the hardness after heat treating dominates the endurable Hertzian pressure. The second important parameter, which determines the endurance limit, is the cleanliness of the steel. Furthermore, the crack pattern in the surface and microstructure of the RCF specimens were analyzed by optical microscopy. The results show no microstructural modifications such as dark etching regions or white etching bands. However, the formation of butterflies was detected around non-metallic inclusions in both steels. •Systematical study of the classical rolling contact fatigue behavior of steel AISI 52100 and AISI L3.•Determination of the endurance limit at ultimate load cycles of NG = 108.•Investigation of the influence of steel cleanliness and heat treatment conditions on the fatigue behavior.•Prediction of the endurance limit based on the extreme value statistics of non-metallic inclusions.
doi_str_mv 10.1016/j.wear.2019.04.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2258735196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043164818312511</els_id><sourcerecordid>2258735196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e1acabfd51d8db736fae4525ed089bda518b343d602dd9c97645db0f999228623</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz61J2qQteJHFj4UFL3oOaTJds3STNUkV_72p69nLDAzPOzM8CF1TUlJCxe2u_AIVSkZoV5K6JEycoAVtm6pgvGlO0YKQuiqoqNtzdBHjjpBMcrFAau2GcQKnAfsBxwQwYj2CcqN1ECNWzuB3UAmnkOseXMLaO2OT9S5i73DwY0a38zQpnfCgkt1Ov9soIasgLtHZoMYIV399id4eH15Xz8Xm5Wm9ut8UumJtKoAqrfrBcGpa0zeVGBTUnHEwpO16ozht-6qujCDMmE53jai56cnQdR1jrWDVEt0c9x6C_5ggJrnzU3D5pGSMZxWcdiJT7Ejp4GMMMMhDsHsVviUlclYpd3JWKWeVktQyq8yhu2MI8v-fFoKM2s7OjA2gkzTe_hf_AS8efV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258735196</pqid></control><display><type>article</type><title>Influence of steel cleanliness and heat treatment conditions on rolling contact fatigue of 100Cr6</title><source>Elsevier ScienceDirect Journals</source><creator>Oezel, M. ; Janitzky, T. ; Beiss, P. ; Broeckmann, C.</creator><creatorcontrib>Oezel, M. ; Janitzky, T. ; Beiss, P. ; Broeckmann, C.</creatorcontrib><description>The aim of this work is to determine the rolling contact fatigue (RCF) strength of steel AISI 52100 (DIN 100Cr6) as a common bearing steel in different heat treated conditions. In order to study and evaluate the steel cleanliness and its influence on the fatigue behavior the results are compared to AISI L3 (DIN 102Cr6) as a cold-working tool steel containing higher amounts of non-metallic inclusions as a consequence of a different metallurgical processing. In this work experimental results obtained from both materials with martensitic and bainitic microstructures are presented. In addition, the inclusion content in each material was analyzed using extreme value statistics, and the endurance limits are predicted based on the maximum expected inclusion in the maximum loaded volume as a critical crack initiating defect. The predicted RCF values are in good agreement with the experimental results. Irrespective of the microstructure, the hardness after heat treating dominates the endurable Hertzian pressure. The second important parameter, which determines the endurance limit, is the cleanliness of the steel. Furthermore, the crack pattern in the surface and microstructure of the RCF specimens were analyzed by optical microscopy. The results show no microstructural modifications such as dark etching regions or white etching bands. However, the formation of butterflies was detected around non-metallic inclusions in both steels. •Systematical study of the classical rolling contact fatigue behavior of steel AISI 52100 and AISI L3.•Determination of the endurance limit at ultimate load cycles of NG = 108.•Investigation of the influence of steel cleanliness and heat treatment conditions on the fatigue behavior.•Prediction of the endurance limit based on the extreme value statistics of non-metallic inclusions.</description><identifier>ISSN: 0043-1648</identifier><identifier>EISSN: 1873-2577</identifier><identifier>DOI: 10.1016/j.wear.2019.04.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>AISI 52100 ; AISI L3 ; Bearing steel ; Bearing steels ; Chromium steels ; Cleanliness ; Cold working ; Cold-working tool steel ; Etching ; Extreme values ; Fatigue limit ; Fatigue strength ; Fatigue tests ; Heat treating ; Heat treatment ; Martensitic stainless steels ; Metal fatigue ; Metallurgy ; Microstructure ; Nonmetallic inclusions ; Optical microscopy ; Rolling contact ; Rolling contact fatigue ; Steel ; Tool steels</subject><ispartof>Wear, 2019-07, Vol.430-431, p.272-279</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jul 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-e1acabfd51d8db736fae4525ed089bda518b343d602dd9c97645db0f999228623</citedby><cites>FETCH-LOGICAL-c328t-e1acabfd51d8db736fae4525ed089bda518b343d602dd9c97645db0f999228623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043164818312511$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Oezel, M.</creatorcontrib><creatorcontrib>Janitzky, T.</creatorcontrib><creatorcontrib>Beiss, P.</creatorcontrib><creatorcontrib>Broeckmann, C.</creatorcontrib><title>Influence of steel cleanliness and heat treatment conditions on rolling contact fatigue of 100Cr6</title><title>Wear</title><description>The aim of this work is to determine the rolling contact fatigue (RCF) strength of steel AISI 52100 (DIN 100Cr6) as a common bearing steel in different heat treated conditions. In order to study and evaluate the steel cleanliness and its influence on the fatigue behavior the results are compared to AISI L3 (DIN 102Cr6) as a cold-working tool steel containing higher amounts of non-metallic inclusions as a consequence of a different metallurgical processing. In this work experimental results obtained from both materials with martensitic and bainitic microstructures are presented. In addition, the inclusion content in each material was analyzed using extreme value statistics, and the endurance limits are predicted based on the maximum expected inclusion in the maximum loaded volume as a critical crack initiating defect. The predicted RCF values are in good agreement with the experimental results. Irrespective of the microstructure, the hardness after heat treating dominates the endurable Hertzian pressure. The second important parameter, which determines the endurance limit, is the cleanliness of the steel. Furthermore, the crack pattern in the surface and microstructure of the RCF specimens were analyzed by optical microscopy. The results show no microstructural modifications such as dark etching regions or white etching bands. However, the formation of butterflies was detected around non-metallic inclusions in both steels. •Systematical study of the classical rolling contact fatigue behavior of steel AISI 52100 and AISI L3.•Determination of the endurance limit at ultimate load cycles of NG = 108.•Investigation of the influence of steel cleanliness and heat treatment conditions on the fatigue behavior.•Prediction of the endurance limit based on the extreme value statistics of non-metallic inclusions.</description><subject>AISI 52100</subject><subject>AISI L3</subject><subject>Bearing steel</subject><subject>Bearing steels</subject><subject>Chromium steels</subject><subject>Cleanliness</subject><subject>Cold working</subject><subject>Cold-working tool steel</subject><subject>Etching</subject><subject>Extreme values</subject><subject>Fatigue limit</subject><subject>Fatigue strength</subject><subject>Fatigue tests</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Martensitic stainless steels</subject><subject>Metal fatigue</subject><subject>Metallurgy</subject><subject>Microstructure</subject><subject>Nonmetallic inclusions</subject><subject>Optical microscopy</subject><subject>Rolling contact</subject><subject>Rolling contact fatigue</subject><subject>Steel</subject><subject>Tool steels</subject><issn>0043-1648</issn><issn>1873-2577</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz61J2qQteJHFj4UFL3oOaTJds3STNUkV_72p69nLDAzPOzM8CF1TUlJCxe2u_AIVSkZoV5K6JEycoAVtm6pgvGlO0YKQuiqoqNtzdBHjjpBMcrFAau2GcQKnAfsBxwQwYj2CcqN1ECNWzuB3UAmnkOseXMLaO2OT9S5i73DwY0a38zQpnfCgkt1Ov9soIasgLtHZoMYIV399id4eH15Xz8Xm5Wm9ut8UumJtKoAqrfrBcGpa0zeVGBTUnHEwpO16ozht-6qujCDMmE53jai56cnQdR1jrWDVEt0c9x6C_5ggJrnzU3D5pGSMZxWcdiJT7Ejp4GMMMMhDsHsVviUlclYpd3JWKWeVktQyq8yhu2MI8v-fFoKM2s7OjA2gkzTe_hf_AS8efV0</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Oezel, M.</creator><creator>Janitzky, T.</creator><creator>Beiss, P.</creator><creator>Broeckmann, C.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190715</creationdate><title>Influence of steel cleanliness and heat treatment conditions on rolling contact fatigue of 100Cr6</title><author>Oezel, M. ; Janitzky, T. ; Beiss, P. ; Broeckmann, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e1acabfd51d8db736fae4525ed089bda518b343d602dd9c97645db0f999228623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AISI 52100</topic><topic>AISI L3</topic><topic>Bearing steel</topic><topic>Bearing steels</topic><topic>Chromium steels</topic><topic>Cleanliness</topic><topic>Cold working</topic><topic>Cold-working tool steel</topic><topic>Etching</topic><topic>Extreme values</topic><topic>Fatigue limit</topic><topic>Fatigue strength</topic><topic>Fatigue tests</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Martensitic stainless steels</topic><topic>Metal fatigue</topic><topic>Metallurgy</topic><topic>Microstructure</topic><topic>Nonmetallic inclusions</topic><topic>Optical microscopy</topic><topic>Rolling contact</topic><topic>Rolling contact fatigue</topic><topic>Steel</topic><topic>Tool steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oezel, M.</creatorcontrib><creatorcontrib>Janitzky, T.</creatorcontrib><creatorcontrib>Beiss, P.</creatorcontrib><creatorcontrib>Broeckmann, C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Wear</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oezel, M.</au><au>Janitzky, T.</au><au>Beiss, P.</au><au>Broeckmann, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of steel cleanliness and heat treatment conditions on rolling contact fatigue of 100Cr6</atitle><jtitle>Wear</jtitle><date>2019-07-15</date><risdate>2019</risdate><volume>430-431</volume><spage>272</spage><epage>279</epage><pages>272-279</pages><issn>0043-1648</issn><eissn>1873-2577</eissn><abstract>The aim of this work is to determine the rolling contact fatigue (RCF) strength of steel AISI 52100 (DIN 100Cr6) as a common bearing steel in different heat treated conditions. In order to study and evaluate the steel cleanliness and its influence on the fatigue behavior the results are compared to AISI L3 (DIN 102Cr6) as a cold-working tool steel containing higher amounts of non-metallic inclusions as a consequence of a different metallurgical processing. In this work experimental results obtained from both materials with martensitic and bainitic microstructures are presented. In addition, the inclusion content in each material was analyzed using extreme value statistics, and the endurance limits are predicted based on the maximum expected inclusion in the maximum loaded volume as a critical crack initiating defect. The predicted RCF values are in good agreement with the experimental results. Irrespective of the microstructure, the hardness after heat treating dominates the endurable Hertzian pressure. The second important parameter, which determines the endurance limit, is the cleanliness of the steel. Furthermore, the crack pattern in the surface and microstructure of the RCF specimens were analyzed by optical microscopy. The results show no microstructural modifications such as dark etching regions or white etching bands. However, the formation of butterflies was detected around non-metallic inclusions in both steels. •Systematical study of the classical rolling contact fatigue behavior of steel AISI 52100 and AISI L3.•Determination of the endurance limit at ultimate load cycles of NG = 108.•Investigation of the influence of steel cleanliness and heat treatment conditions on the fatigue behavior.•Prediction of the endurance limit based on the extreme value statistics of non-metallic inclusions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wear.2019.04.026</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1648
ispartof Wear, 2019-07, Vol.430-431, p.272-279
issn 0043-1648
1873-2577
language eng
recordid cdi_proquest_journals_2258735196
source Elsevier ScienceDirect Journals
subjects AISI 52100
AISI L3
Bearing steel
Bearing steels
Chromium steels
Cleanliness
Cold working
Cold-working tool steel
Etching
Extreme values
Fatigue limit
Fatigue strength
Fatigue tests
Heat treating
Heat treatment
Martensitic stainless steels
Metal fatigue
Metallurgy
Microstructure
Nonmetallic inclusions
Optical microscopy
Rolling contact
Rolling contact fatigue
Steel
Tool steels
title Influence of steel cleanliness and heat treatment conditions on rolling contact fatigue of 100Cr6
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20steel%20cleanliness%20and%20heat%20treatment%20conditions%20on%20rolling%20contact%20fatigue%20of%20100Cr6&rft.jtitle=Wear&rft.au=Oezel,%20M.&rft.date=2019-07-15&rft.volume=430-431&rft.spage=272&rft.epage=279&rft.pages=272-279&rft.issn=0043-1648&rft.eissn=1873-2577&rft_id=info:doi/10.1016/j.wear.2019.04.026&rft_dat=%3Cproquest_cross%3E2258735196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258735196&rft_id=info:pmid/&rft_els_id=S0043164818312511&rfr_iscdi=true