On the number of employed in the matching model

This study analyzes the number of matches in stable and efficient matchings. The benchmark number of matches is the largest one among the matchings in which no agent can be better off by itself. We show that, in the one-to-one matching model, the number of matches in any stable matching is more than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical economics 2019-08, Vol.83, p.63-69
Hauptverfasser: Kitahara, Minoru, Okumura, Yasunori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue
container_start_page 63
container_title Journal of mathematical economics
container_volume 83
creator Kitahara, Minoru
Okumura, Yasunori
description This study analyzes the number of matches in stable and efficient matchings. The benchmark number of matches is the largest one among the matchings in which no agent can be better off by itself. We show that, in the one-to-one matching model, the number of matches in any stable matching is more than or equal to the smallest integer that is not less than half of the benchmark number. This result is satisfied even if “stable matching” is replaced by “efficient matching”. We extend the model to the many-to-one matching one and provide the sets of preference profiles in which each of the above results continues to hold.
doi_str_mv 10.1016/j.jmateco.2019.04.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2258726629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030440681930045X</els_id><sourcerecordid>2258726629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-1dd4f3b068961286175129bf80e0d5df74cb43d0d24ac58cf99030ea0091f3393</originalsourceid><addsrcrecordid>eNqFkEtLxDAQx4MouK5-BKHgud3Jo2lyEll8wcJe9BzaZOKmbJs17Qr77e1S757mMP_HzI-QewoFBSpXbdF29Yg2FgyoLkAUAOKCLKiqeE5Lri7JAjiIXIBU1-RmGFoAqCpQC7La9tm4w6w_dg2mLPoMu8M-ntBlYd5M0XYX-q-siw73t-TK1_sB7_7mkny-PH-s3_LN9vV9_bTJrZBqzKlzwvNm6tOSMiVpVVKmG68AwZXOV8I2gjtwTNS2VNZrPV2INYCmnnPNl-Rhzj2k-H3EYTRtPKZ-qjSMlapiUrKzqpxVNsVhSOjNIYWuTidDwZzZmNb8sTFnNgaEmdhMvsfZh9MLPwGTGWzA3qILCe1oXAz_JPwC9UFtYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258726629</pqid></control><display><type>article</type><title>On the number of employed in the matching model</title><source>Elsevier ScienceDirect Journals</source><creator>Kitahara, Minoru ; Okumura, Yasunori</creator><creatorcontrib>Kitahara, Minoru ; Okumura, Yasunori</creatorcontrib><description>This study analyzes the number of matches in stable and efficient matchings. The benchmark number of matches is the largest one among the matchings in which no agent can be better off by itself. We show that, in the one-to-one matching model, the number of matches in any stable matching is more than or equal to the smallest integer that is not less than half of the benchmark number. This result is satisfied even if “stable matching” is replaced by “efficient matching”. We extend the model to the many-to-one matching one and provide the sets of preference profiles in which each of the above results continues to hold.</description><identifier>ISSN: 0304-4068</identifier><identifier>EISSN: 1873-1538</identifier><identifier>DOI: 10.1016/j.jmateco.2019.04.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Benchmarks ; Efficiency ; Inequality ; Matching ; Maximal individually rational matching ; Model matching ; Number of employed ; Stability ; Workers</subject><ispartof>Journal of mathematical economics, 2019-08, Vol.83, p.63-69</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Aug 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-1dd4f3b068961286175129bf80e0d5df74cb43d0d24ac58cf99030ea0091f3393</citedby><cites>FETCH-LOGICAL-c468t-1dd4f3b068961286175129bf80e0d5df74cb43d0d24ac58cf99030ea0091f3393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030440681930045X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Kitahara, Minoru</creatorcontrib><creatorcontrib>Okumura, Yasunori</creatorcontrib><title>On the number of employed in the matching model</title><title>Journal of mathematical economics</title><description>This study analyzes the number of matches in stable and efficient matchings. The benchmark number of matches is the largest one among the matchings in which no agent can be better off by itself. We show that, in the one-to-one matching model, the number of matches in any stable matching is more than or equal to the smallest integer that is not less than half of the benchmark number. This result is satisfied even if “stable matching” is replaced by “efficient matching”. We extend the model to the many-to-one matching one and provide the sets of preference profiles in which each of the above results continues to hold.</description><subject>Benchmarks</subject><subject>Efficiency</subject><subject>Inequality</subject><subject>Matching</subject><subject>Maximal individually rational matching</subject><subject>Model matching</subject><subject>Number of employed</subject><subject>Stability</subject><subject>Workers</subject><issn>0304-4068</issn><issn>1873-1538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQx4MouK5-BKHgud3Jo2lyEll8wcJe9BzaZOKmbJs17Qr77e1S757mMP_HzI-QewoFBSpXbdF29Yg2FgyoLkAUAOKCLKiqeE5Lri7JAjiIXIBU1-RmGFoAqCpQC7La9tm4w6w_dg2mLPoMu8M-ntBlYd5M0XYX-q-siw73t-TK1_sB7_7mkny-PH-s3_LN9vV9_bTJrZBqzKlzwvNm6tOSMiVpVVKmG68AwZXOV8I2gjtwTNS2VNZrPV2INYCmnnPNl-Rhzj2k-H3EYTRtPKZ-qjSMlapiUrKzqpxVNsVhSOjNIYWuTidDwZzZmNb8sTFnNgaEmdhMvsfZh9MLPwGTGWzA3qILCe1oXAz_JPwC9UFtYA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Kitahara, Minoru</creator><creator>Okumura, Yasunori</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20190801</creationdate><title>On the number of employed in the matching model</title><author>Kitahara, Minoru ; Okumura, Yasunori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-1dd4f3b068961286175129bf80e0d5df74cb43d0d24ac58cf99030ea0091f3393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Benchmarks</topic><topic>Efficiency</topic><topic>Inequality</topic><topic>Matching</topic><topic>Maximal individually rational matching</topic><topic>Model matching</topic><topic>Number of employed</topic><topic>Stability</topic><topic>Workers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitahara, Minoru</creatorcontrib><creatorcontrib>Okumura, Yasunori</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of mathematical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitahara, Minoru</au><au>Okumura, Yasunori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the number of employed in the matching model</atitle><jtitle>Journal of mathematical economics</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>83</volume><spage>63</spage><epage>69</epage><pages>63-69</pages><issn>0304-4068</issn><eissn>1873-1538</eissn><abstract>This study analyzes the number of matches in stable and efficient matchings. The benchmark number of matches is the largest one among the matchings in which no agent can be better off by itself. We show that, in the one-to-one matching model, the number of matches in any stable matching is more than or equal to the smallest integer that is not less than half of the benchmark number. This result is satisfied even if “stable matching” is replaced by “efficient matching”. We extend the model to the many-to-one matching one and provide the sets of preference profiles in which each of the above results continues to hold.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmateco.2019.04.004</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4068
ispartof Journal of mathematical economics, 2019-08, Vol.83, p.63-69
issn 0304-4068
1873-1538
language eng
recordid cdi_proquest_journals_2258726629
source Elsevier ScienceDirect Journals
subjects Benchmarks
Efficiency
Inequality
Matching
Maximal individually rational matching
Model matching
Number of employed
Stability
Workers
title On the number of employed in the matching model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20number%20of%20employed%20in%20the%20matching%20model&rft.jtitle=Journal%20of%20mathematical%20economics&rft.au=Kitahara,%20Minoru&rft.date=2019-08-01&rft.volume=83&rft.spage=63&rft.epage=69&rft.pages=63-69&rft.issn=0304-4068&rft.eissn=1873-1538&rft_id=info:doi/10.1016/j.jmateco.2019.04.004&rft_dat=%3Cproquest_cross%3E2258726629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258726629&rft_id=info:pmid/&rft_els_id=S030440681930045X&rfr_iscdi=true