On the number of employed in the matching model
This study analyzes the number of matches in stable and efficient matchings. The benchmark number of matches is the largest one among the matchings in which no agent can be better off by itself. We show that, in the one-to-one matching model, the number of matches in any stable matching is more than...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical economics 2019-08, Vol.83, p.63-69 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | |
container_start_page | 63 |
container_title | Journal of mathematical economics |
container_volume | 83 |
creator | Kitahara, Minoru Okumura, Yasunori |
description | This study analyzes the number of matches in stable and efficient matchings. The benchmark number of matches is the largest one among the matchings in which no agent can be better off by itself. We show that, in the one-to-one matching model, the number of matches in any stable matching is more than or equal to the smallest integer that is not less than half of the benchmark number. This result is satisfied even if “stable matching” is replaced by “efficient matching”. We extend the model to the many-to-one matching one and provide the sets of preference profiles in which each of the above results continues to hold. |
doi_str_mv | 10.1016/j.jmateco.2019.04.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2258726629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030440681930045X</els_id><sourcerecordid>2258726629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-1dd4f3b068961286175129bf80e0d5df74cb43d0d24ac58cf99030ea0091f3393</originalsourceid><addsrcrecordid>eNqFkEtLxDAQx4MouK5-BKHgud3Jo2lyEll8wcJe9BzaZOKmbJs17Qr77e1S757mMP_HzI-QewoFBSpXbdF29Yg2FgyoLkAUAOKCLKiqeE5Lri7JAjiIXIBU1-RmGFoAqCpQC7La9tm4w6w_dg2mLPoMu8M-ntBlYd5M0XYX-q-siw73t-TK1_sB7_7mkny-PH-s3_LN9vV9_bTJrZBqzKlzwvNm6tOSMiVpVVKmG68AwZXOV8I2gjtwTNS2VNZrPV2INYCmnnPNl-Rhzj2k-H3EYTRtPKZ-qjSMlapiUrKzqpxVNsVhSOjNIYWuTidDwZzZmNb8sTFnNgaEmdhMvsfZh9MLPwGTGWzA3qILCe1oXAz_JPwC9UFtYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258726629</pqid></control><display><type>article</type><title>On the number of employed in the matching model</title><source>Elsevier ScienceDirect Journals</source><creator>Kitahara, Minoru ; Okumura, Yasunori</creator><creatorcontrib>Kitahara, Minoru ; Okumura, Yasunori</creatorcontrib><description>This study analyzes the number of matches in stable and efficient matchings. The benchmark number of matches is the largest one among the matchings in which no agent can be better off by itself. We show that, in the one-to-one matching model, the number of matches in any stable matching is more than or equal to the smallest integer that is not less than half of the benchmark number. This result is satisfied even if “stable matching” is replaced by “efficient matching”. We extend the model to the many-to-one matching one and provide the sets of preference profiles in which each of the above results continues to hold.</description><identifier>ISSN: 0304-4068</identifier><identifier>EISSN: 1873-1538</identifier><identifier>DOI: 10.1016/j.jmateco.2019.04.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Benchmarks ; Efficiency ; Inequality ; Matching ; Maximal individually rational matching ; Model matching ; Number of employed ; Stability ; Workers</subject><ispartof>Journal of mathematical economics, 2019-08, Vol.83, p.63-69</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Aug 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-1dd4f3b068961286175129bf80e0d5df74cb43d0d24ac58cf99030ea0091f3393</citedby><cites>FETCH-LOGICAL-c468t-1dd4f3b068961286175129bf80e0d5df74cb43d0d24ac58cf99030ea0091f3393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030440681930045X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Kitahara, Minoru</creatorcontrib><creatorcontrib>Okumura, Yasunori</creatorcontrib><title>On the number of employed in the matching model</title><title>Journal of mathematical economics</title><description>This study analyzes the number of matches in stable and efficient matchings. The benchmark number of matches is the largest one among the matchings in which no agent can be better off by itself. We show that, in the one-to-one matching model, the number of matches in any stable matching is more than or equal to the smallest integer that is not less than half of the benchmark number. This result is satisfied even if “stable matching” is replaced by “efficient matching”. We extend the model to the many-to-one matching one and provide the sets of preference profiles in which each of the above results continues to hold.</description><subject>Benchmarks</subject><subject>Efficiency</subject><subject>Inequality</subject><subject>Matching</subject><subject>Maximal individually rational matching</subject><subject>Model matching</subject><subject>Number of employed</subject><subject>Stability</subject><subject>Workers</subject><issn>0304-4068</issn><issn>1873-1538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQx4MouK5-BKHgud3Jo2lyEll8wcJe9BzaZOKmbJs17Qr77e1S757mMP_HzI-QewoFBSpXbdF29Yg2FgyoLkAUAOKCLKiqeE5Lri7JAjiIXIBU1-RmGFoAqCpQC7La9tm4w6w_dg2mLPoMu8M-ntBlYd5M0XYX-q-siw73t-TK1_sB7_7mkny-PH-s3_LN9vV9_bTJrZBqzKlzwvNm6tOSMiVpVVKmG68AwZXOV8I2gjtwTNS2VNZrPV2INYCmnnPNl-Rhzj2k-H3EYTRtPKZ-qjSMlapiUrKzqpxVNsVhSOjNIYWuTidDwZzZmNb8sTFnNgaEmdhMvsfZh9MLPwGTGWzA3qILCe1oXAz_JPwC9UFtYA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Kitahara, Minoru</creator><creator>Okumura, Yasunori</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20190801</creationdate><title>On the number of employed in the matching model</title><author>Kitahara, Minoru ; Okumura, Yasunori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-1dd4f3b068961286175129bf80e0d5df74cb43d0d24ac58cf99030ea0091f3393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Benchmarks</topic><topic>Efficiency</topic><topic>Inequality</topic><topic>Matching</topic><topic>Maximal individually rational matching</topic><topic>Model matching</topic><topic>Number of employed</topic><topic>Stability</topic><topic>Workers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitahara, Minoru</creatorcontrib><creatorcontrib>Okumura, Yasunori</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of mathematical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitahara, Minoru</au><au>Okumura, Yasunori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the number of employed in the matching model</atitle><jtitle>Journal of mathematical economics</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>83</volume><spage>63</spage><epage>69</epage><pages>63-69</pages><issn>0304-4068</issn><eissn>1873-1538</eissn><abstract>This study analyzes the number of matches in stable and efficient matchings. The benchmark number of matches is the largest one among the matchings in which no agent can be better off by itself. We show that, in the one-to-one matching model, the number of matches in any stable matching is more than or equal to the smallest integer that is not less than half of the benchmark number. This result is satisfied even if “stable matching” is replaced by “efficient matching”. We extend the model to the many-to-one matching one and provide the sets of preference profiles in which each of the above results continues to hold.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmateco.2019.04.004</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4068 |
ispartof | Journal of mathematical economics, 2019-08, Vol.83, p.63-69 |
issn | 0304-4068 1873-1538 |
language | eng |
recordid | cdi_proquest_journals_2258726629 |
source | Elsevier ScienceDirect Journals |
subjects | Benchmarks Efficiency Inequality Matching Maximal individually rational matching Model matching Number of employed Stability Workers |
title | On the number of employed in the matching model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20number%20of%20employed%20in%20the%20matching%20model&rft.jtitle=Journal%20of%20mathematical%20economics&rft.au=Kitahara,%20Minoru&rft.date=2019-08-01&rft.volume=83&rft.spage=63&rft.epage=69&rft.pages=63-69&rft.issn=0304-4068&rft.eissn=1873-1538&rft_id=info:doi/10.1016/j.jmateco.2019.04.004&rft_dat=%3Cproquest_cross%3E2258726629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258726629&rft_id=info:pmid/&rft_els_id=S030440681930045X&rfr_iscdi=true |