From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect
Using microscopic price models based on Hawkes processes, it has been shown that under some no-arbitrage condition, the high degree of endogeneity of markets together with the phenomenon of metaorders splitting generate rough Heston-type volatility at the macroscopic scale. One additional important...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dandapani, Aditi Jusselin, Paul Rosenbaum, Mathieu |
description | Using microscopic price models based on Hawkes processes, it has been shown that under some no-arbitrage condition, the high degree of endogeneity of markets together with the phenomenon of metaorders splitting generate rough Heston-type volatility at the macroscopic scale. One additional important feature of financial dynamics, at the heart of several influential works in econophysics, is the so-called feedback or Zumbach effect. This essentially means that past trends in returns convey significant information on future volatility. A natural way to reproduce this property in microstructure modeling is to use quadratic versions of Hawkes processes. We show that after suitable rescaling, the long term limits of these processes are refined versions of rough Heston models where the volatility coefficient is enhanced compared to the square root characterizing Heston-type dynamics. Furthermore the Zumbach effect remains explicit in these limiting rough volatility models. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2258498522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2258498522</sourcerecordid><originalsourceid>FETCH-proquest_journals_22584985223</originalsourceid><addsrcrecordid>eNqNjEEOgjAQRRsTE4lyh0lck-CUKq6NhAO40oWpUAQECp1W4u3twgO4-i_5L2_BAuR8F6UJ4oqFRG0cx7g_oBA8YLfM6B4mJ0sjbVNALueXIhiNLhSRJ6uB3KhMlCuyegCj3bOGt-683jX2A70uVUcwN7aGq-sfsqhBVZUq7IYtK9mRCn-7ZtvsfDnlka9PzufurXZm8NcdUaTJMRWI_D_rC9j0Q8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258498522</pqid></control><display><type>article</type><title>From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect</title><source>Free E- Journals</source><creator>Dandapani, Aditi ; Jusselin, Paul ; Rosenbaum, Mathieu</creator><creatorcontrib>Dandapani, Aditi ; Jusselin, Paul ; Rosenbaum, Mathieu</creatorcontrib><description>Using microscopic price models based on Hawkes processes, it has been shown that under some no-arbitrage condition, the high degree of endogeneity of markets together with the phenomenon of metaorders splitting generate rough Heston-type volatility at the macroscopic scale. One additional important feature of financial dynamics, at the heart of several influential works in econophysics, is the so-called feedback or Zumbach effect. This essentially means that past trends in returns convey significant information on future volatility. A natural way to reproduce this property in microstructure modeling is to use quadratic versions of Hawkes processes. We show that after suitable rescaling, the long term limits of these processes are refined versions of rough Heston models where the volatility coefficient is enhanced compared to the square root characterizing Heston-type dynamics. Furthermore the Zumbach effect remains explicit in these limiting rough volatility models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Rescaling ; Volatility</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dandapani, Aditi</creatorcontrib><creatorcontrib>Jusselin, Paul</creatorcontrib><creatorcontrib>Rosenbaum, Mathieu</creatorcontrib><title>From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect</title><title>arXiv.org</title><description>Using microscopic price models based on Hawkes processes, it has been shown that under some no-arbitrage condition, the high degree of endogeneity of markets together with the phenomenon of metaorders splitting generate rough Heston-type volatility at the macroscopic scale. One additional important feature of financial dynamics, at the heart of several influential works in econophysics, is the so-called feedback or Zumbach effect. This essentially means that past trends in returns convey significant information on future volatility. A natural way to reproduce this property in microstructure modeling is to use quadratic versions of Hawkes processes. We show that after suitable rescaling, the long term limits of these processes are refined versions of rough Heston models where the volatility coefficient is enhanced compared to the square root characterizing Heston-type dynamics. Furthermore the Zumbach effect remains explicit in these limiting rough volatility models.</description><subject>Rescaling</subject><subject>Volatility</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjEEOgjAQRRsTE4lyh0lck-CUKq6NhAO40oWpUAQECp1W4u3twgO4-i_5L2_BAuR8F6UJ4oqFRG0cx7g_oBA8YLfM6B4mJ0sjbVNALueXIhiNLhSRJ6uB3KhMlCuyegCj3bOGt-683jX2A70uVUcwN7aGq-sfsqhBVZUq7IYtK9mRCn-7ZtvsfDnlka9PzufurXZm8NcdUaTJMRWI_D_rC9j0Q8c</recordid><startdate>20210119</startdate><enddate>20210119</enddate><creator>Dandapani, Aditi</creator><creator>Jusselin, Paul</creator><creator>Rosenbaum, Mathieu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210119</creationdate><title>From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect</title><author>Dandapani, Aditi ; Jusselin, Paul ; Rosenbaum, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22584985223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Rescaling</topic><topic>Volatility</topic><toplevel>online_resources</toplevel><creatorcontrib>Dandapani, Aditi</creatorcontrib><creatorcontrib>Jusselin, Paul</creatorcontrib><creatorcontrib>Rosenbaum, Mathieu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dandapani, Aditi</au><au>Jusselin, Paul</au><au>Rosenbaum, Mathieu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect</atitle><jtitle>arXiv.org</jtitle><date>2021-01-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Using microscopic price models based on Hawkes processes, it has been shown that under some no-arbitrage condition, the high degree of endogeneity of markets together with the phenomenon of metaorders splitting generate rough Heston-type volatility at the macroscopic scale. One additional important feature of financial dynamics, at the heart of several influential works in econophysics, is the so-called feedback or Zumbach effect. This essentially means that past trends in returns convey significant information on future volatility. A natural way to reproduce this property in microstructure modeling is to use quadratic versions of Hawkes processes. We show that after suitable rescaling, the long term limits of these processes are refined versions of rough Heston models where the volatility coefficient is enhanced compared to the square root characterizing Heston-type dynamics. Furthermore the Zumbach effect remains explicit in these limiting rough volatility models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2258498522 |
source | Free E- Journals |
subjects | Rescaling Volatility |
title | From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=From%20quadratic%20Hawkes%20processes%20to%20super-Heston%20rough%20volatility%20models%20with%20Zumbach%20effect&rft.jtitle=arXiv.org&rft.au=Dandapani,%20Aditi&rft.date=2021-01-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2258498522%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258498522&rft_id=info:pmid/&rfr_iscdi=true |