Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin, China
In semiarid and arid regions, the evaporation from bare soil is highly sensitive to changes in the depth to the water table. This study quantifies the relation between water-table depth and the groundwater contribution to evaporation in the Ordos Basin in China. In-situ field experiments were combin...
Gespeichert in:
Veröffentlicht in: | Hydrogeology journal 2019-11, Vol.27 (7), p.2707-2718 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2718 |
---|---|
container_issue | 7 |
container_start_page | 2707 |
container_title | Hydrogeology journal |
container_volume | 27 |
creator | Ma, Zhitong Wang, Wenke Zhang, Zaiyong Brunner, Philip Wang, Zhoufeng Chen, Li Zhao, Ming Gong, Chengcheng |
description | In semiarid and arid regions, the evaporation from bare soil is highly sensitive to changes in the depth to the water table. This study quantifies the relation between water-table depth and the groundwater contribution to evaporation in the Ordos Basin in China. In-situ field experiments were combined with numerical simulations of heat, vapor and liquid water flow. Based on lysimeter experiments and a calibrated numerical model, a relation between depth to groundwater and evaporation rate was established for the lysimeter site. In addition, a sensitivity analysis considering the hydraulic conductivity and the inverse of the air-entry pressure (van Genuchten
α
) was established. For the field site, the results showed that for the water-table depths less than 52 cm below the ground, evaporation is independent of the water-table depth. For water-table depths exceeding 52 cm, an exponential relation between depth to groundwater and evaporation is observed. No phreatic evaporation occurs for water tables deeper than 105 cm, which is nearly two times the capillary fringe height. The sensitivity analysis showed that the extinction depth decreased with decreasing hydraulic conductivity and increased with
α
. The field-specific results and the sensitivity analysis provide valuable information to understand the dynamic processes of soil evaporation in the Ordos Basin. From a methodological point of view, the proposed modelling approach and the integration of lysimeter data proved to be a highly efficient combination to study evaporation dynamics in semi-arid and arid environments. |
doi_str_mv | 10.1007/s10040-019-02012-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2258484321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2258484321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9a67104e6c01cb4ddc102aacdb77a9a7f77bb7bc2eca10390bf7a66d39495ec33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRUKt_wFPAq9F8bBv3WItfIHjRc5hNZm1kN6mZreLVX25sBW9eZoaZ93kH3qo6keJcCmEuqNRacCEbLpSQioud6kDWelpWU7O7mSVX0tT71SHRqyhyafRB9TUnQqIQX1gLGTml0DN8h1XKMIYUWZfTwHzoOswYR_YBI2Y-Qtsj87gal8TWG7r_pDBgORKD6BmwuB4wBwc9G5LHnoXIxiWyx-wTsSso0BlbLEOEo2qvg57w-LdPqueb66fFHX94vL1fzB-407IZeQMzI0WNMyeka2vvnRQKwPnWGGjAdMa0rWmdQgdS6Ea0nYHZzOumbqbotJ5Up1vfVU5va6TRvqZ1juWlVWp6WV_WWsmiUluVy4koY2dXOQyQP60U9idru83alqztJmsrCqS3EBVxfMH8Z_0P9Q2iP4PW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258484321</pqid></control><display><type>article</type><title>Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin, China</title><source>SpringerLink Journals</source><creator>Ma, Zhitong ; Wang, Wenke ; Zhang, Zaiyong ; Brunner, Philip ; Wang, Zhoufeng ; Chen, Li ; Zhao, Ming ; Gong, Chengcheng</creator><creatorcontrib>Ma, Zhitong ; Wang, Wenke ; Zhang, Zaiyong ; Brunner, Philip ; Wang, Zhoufeng ; Chen, Li ; Zhao, Ming ; Gong, Chengcheng</creatorcontrib><description>In semiarid and arid regions, the evaporation from bare soil is highly sensitive to changes in the depth to the water table. This study quantifies the relation between water-table depth and the groundwater contribution to evaporation in the Ordos Basin in China. In-situ field experiments were combined with numerical simulations of heat, vapor and liquid water flow. Based on lysimeter experiments and a calibrated numerical model, a relation between depth to groundwater and evaporation rate was established for the lysimeter site. In addition, a sensitivity analysis considering the hydraulic conductivity and the inverse of the air-entry pressure (van Genuchten
α
) was established. For the field site, the results showed that for the water-table depths less than 52 cm below the ground, evaporation is independent of the water-table depth. For water-table depths exceeding 52 cm, an exponential relation between depth to groundwater and evaporation is observed. No phreatic evaporation occurs for water tables deeper than 105 cm, which is nearly two times the capillary fringe height. The sensitivity analysis showed that the extinction depth decreased with decreasing hydraulic conductivity and increased with
α
. The field-specific results and the sensitivity analysis provide valuable information to understand the dynamic processes of soil evaporation in the Ordos Basin. From a methodological point of view, the proposed modelling approach and the integration of lysimeter data proved to be a highly efficient combination to study evaporation dynamics in semi-arid and arid environments.</description><identifier>ISSN: 1431-2174</identifier><identifier>EISSN: 1435-0157</identifier><identifier>DOI: 10.1007/s10040-019-02012-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Aquatic Pollution ; Arid environments ; Arid regions ; Arid zones ; Chemical reactions ; Computer simulation ; Depth ; Earth and Environmental Science ; Earth Sciences ; Evaporation ; Evaporation rate ; Field tests ; Geology ; Geophysics/Geodesy ; Groundwater ; Groundwater table ; Hydraulic conductivity ; Hydrogeology ; Hydrology/Water Resources ; Lysimeters ; Mathematical models ; Numerical models ; Numerical simulations ; Semiarid environments ; Semiarid zones ; Sensitivity analysis ; Soil ; Soil dynamics ; Soil water ; Terrain ; Vapors ; Waste Water Technology ; Water depth ; Water flow ; Water Management ; Water Pollution Control ; Water Quality/Water Pollution ; Water table ; Water table depth</subject><ispartof>Hydrogeology journal, 2019-11, Vol.27 (7), p.2707-2718</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Hydrogeology Journal is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9a67104e6c01cb4ddc102aacdb77a9a7f77bb7bc2eca10390bf7a66d39495ec33</citedby><cites>FETCH-LOGICAL-c319t-9a67104e6c01cb4ddc102aacdb77a9a7f77bb7bc2eca10390bf7a66d39495ec33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10040-019-02012-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10040-019-02012-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ma, Zhitong</creatorcontrib><creatorcontrib>Wang, Wenke</creatorcontrib><creatorcontrib>Zhang, Zaiyong</creatorcontrib><creatorcontrib>Brunner, Philip</creatorcontrib><creatorcontrib>Wang, Zhoufeng</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Gong, Chengcheng</creatorcontrib><title>Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin, China</title><title>Hydrogeology journal</title><addtitle>Hydrogeol J</addtitle><description>In semiarid and arid regions, the evaporation from bare soil is highly sensitive to changes in the depth to the water table. This study quantifies the relation between water-table depth and the groundwater contribution to evaporation in the Ordos Basin in China. In-situ field experiments were combined with numerical simulations of heat, vapor and liquid water flow. Based on lysimeter experiments and a calibrated numerical model, a relation between depth to groundwater and evaporation rate was established for the lysimeter site. In addition, a sensitivity analysis considering the hydraulic conductivity and the inverse of the air-entry pressure (van Genuchten
α
) was established. For the field site, the results showed that for the water-table depths less than 52 cm below the ground, evaporation is independent of the water-table depth. For water-table depths exceeding 52 cm, an exponential relation between depth to groundwater and evaporation is observed. No phreatic evaporation occurs for water tables deeper than 105 cm, which is nearly two times the capillary fringe height. The sensitivity analysis showed that the extinction depth decreased with decreasing hydraulic conductivity and increased with
α
. The field-specific results and the sensitivity analysis provide valuable information to understand the dynamic processes of soil evaporation in the Ordos Basin. From a methodological point of view, the proposed modelling approach and the integration of lysimeter data proved to be a highly efficient combination to study evaporation dynamics in semi-arid and arid environments.</description><subject>Analysis</subject><subject>Aquatic Pollution</subject><subject>Arid environments</subject><subject>Arid regions</subject><subject>Arid zones</subject><subject>Chemical reactions</subject><subject>Computer simulation</subject><subject>Depth</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Field tests</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Groundwater</subject><subject>Groundwater table</subject><subject>Hydraulic conductivity</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Lysimeters</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Numerical simulations</subject><subject>Semiarid environments</subject><subject>Semiarid zones</subject><subject>Sensitivity analysis</subject><subject>Soil</subject><subject>Soil dynamics</subject><subject>Soil water</subject><subject>Terrain</subject><subject>Vapors</subject><subject>Waste Water Technology</subject><subject>Water depth</subject><subject>Water flow</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water Quality/Water Pollution</subject><subject>Water table</subject><subject>Water table depth</subject><issn>1431-2174</issn><issn>1435-0157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhhdRUKt_wFPAq9F8bBv3WItfIHjRc5hNZm1kN6mZreLVX25sBW9eZoaZ93kH3qo6keJcCmEuqNRacCEbLpSQioud6kDWelpWU7O7mSVX0tT71SHRqyhyafRB9TUnQqIQX1gLGTml0DN8h1XKMIYUWZfTwHzoOswYR_YBI2Y-Qtsj87gal8TWG7r_pDBgORKD6BmwuB4wBwc9G5LHnoXIxiWyx-wTsSso0BlbLEOEo2qvg57w-LdPqueb66fFHX94vL1fzB-407IZeQMzI0WNMyeka2vvnRQKwPnWGGjAdMa0rWmdQgdS6Ea0nYHZzOumbqbotJ5Up1vfVU5va6TRvqZ1juWlVWp6WV_WWsmiUluVy4koY2dXOQyQP60U9idru83alqztJmsrCqS3EBVxfMH8Z_0P9Q2iP4PW</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Ma, Zhitong</creator><creator>Wang, Wenke</creator><creator>Zhang, Zaiyong</creator><creator>Brunner, Philip</creator><creator>Wang, Zhoufeng</creator><creator>Chen, Li</creator><creator>Zhao, Ming</creator><creator>Gong, Chengcheng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20191101</creationdate><title>Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin, China</title><author>Ma, Zhitong ; Wang, Wenke ; Zhang, Zaiyong ; Brunner, Philip ; Wang, Zhoufeng ; Chen, Li ; Zhao, Ming ; Gong, Chengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9a67104e6c01cb4ddc102aacdb77a9a7f77bb7bc2eca10390bf7a66d39495ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Aquatic Pollution</topic><topic>Arid environments</topic><topic>Arid regions</topic><topic>Arid zones</topic><topic>Chemical reactions</topic><topic>Computer simulation</topic><topic>Depth</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Field tests</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Groundwater</topic><topic>Groundwater table</topic><topic>Hydraulic conductivity</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Lysimeters</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Numerical simulations</topic><topic>Semiarid environments</topic><topic>Semiarid zones</topic><topic>Sensitivity analysis</topic><topic>Soil</topic><topic>Soil dynamics</topic><topic>Soil water</topic><topic>Terrain</topic><topic>Vapors</topic><topic>Waste Water Technology</topic><topic>Water depth</topic><topic>Water flow</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water Quality/Water Pollution</topic><topic>Water table</topic><topic>Water table depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhitong</creatorcontrib><creatorcontrib>Wang, Wenke</creatorcontrib><creatorcontrib>Zhang, Zaiyong</creatorcontrib><creatorcontrib>Brunner, Philip</creatorcontrib><creatorcontrib>Wang, Zhoufeng</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Gong, Chengcheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Hydrogeology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhitong</au><au>Wang, Wenke</au><au>Zhang, Zaiyong</au><au>Brunner, Philip</au><au>Wang, Zhoufeng</au><au>Chen, Li</au><au>Zhao, Ming</au><au>Gong, Chengcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin, China</atitle><jtitle>Hydrogeology journal</jtitle><stitle>Hydrogeol J</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>27</volume><issue>7</issue><spage>2707</spage><epage>2718</epage><pages>2707-2718</pages><issn>1431-2174</issn><eissn>1435-0157</eissn><abstract>In semiarid and arid regions, the evaporation from bare soil is highly sensitive to changes in the depth to the water table. This study quantifies the relation between water-table depth and the groundwater contribution to evaporation in the Ordos Basin in China. In-situ field experiments were combined with numerical simulations of heat, vapor and liquid water flow. Based on lysimeter experiments and a calibrated numerical model, a relation between depth to groundwater and evaporation rate was established for the lysimeter site. In addition, a sensitivity analysis considering the hydraulic conductivity and the inverse of the air-entry pressure (van Genuchten
α
) was established. For the field site, the results showed that for the water-table depths less than 52 cm below the ground, evaporation is independent of the water-table depth. For water-table depths exceeding 52 cm, an exponential relation between depth to groundwater and evaporation is observed. No phreatic evaporation occurs for water tables deeper than 105 cm, which is nearly two times the capillary fringe height. The sensitivity analysis showed that the extinction depth decreased with decreasing hydraulic conductivity and increased with
α
. The field-specific results and the sensitivity analysis provide valuable information to understand the dynamic processes of soil evaporation in the Ordos Basin. From a methodological point of view, the proposed modelling approach and the integration of lysimeter data proved to be a highly efficient combination to study evaporation dynamics in semi-arid and arid environments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10040-019-02012-0</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-2174 |
ispartof | Hydrogeology journal, 2019-11, Vol.27 (7), p.2707-2718 |
issn | 1431-2174 1435-0157 |
language | eng |
recordid | cdi_proquest_journals_2258484321 |
source | SpringerLink Journals |
subjects | Analysis Aquatic Pollution Arid environments Arid regions Arid zones Chemical reactions Computer simulation Depth Earth and Environmental Science Earth Sciences Evaporation Evaporation rate Field tests Geology Geophysics/Geodesy Groundwater Groundwater table Hydraulic conductivity Hydrogeology Hydrology/Water Resources Lysimeters Mathematical models Numerical models Numerical simulations Semiarid environments Semiarid zones Sensitivity analysis Soil Soil dynamics Soil water Terrain Vapors Waste Water Technology Water depth Water flow Water Management Water Pollution Control Water Quality/Water Pollution Water table Water table depth |
title | Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin, China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20bare-soil%20evaporation%20from%20different%20water-table%20depths%20using%20lysimeters%20and%20a%20numerical%20model%20in%20the%20Ordos%20Basin,%20China&rft.jtitle=Hydrogeology%20journal&rft.au=Ma,%20Zhitong&rft.date=2019-11-01&rft.volume=27&rft.issue=7&rft.spage=2707&rft.epage=2718&rft.pages=2707-2718&rft.issn=1431-2174&rft.eissn=1435-0157&rft_id=info:doi/10.1007/s10040-019-02012-0&rft_dat=%3Cproquest_cross%3E2258484321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258484321&rft_id=info:pmid/&rfr_iscdi=true |