Pore space microstructure transitions in porous media under compaction

Pore space microstructure transitions in porous media are investigated by means of simulations of pore networks subject to a random compaction mechanism. With critical path analysis we track the characteristic pore length of the media. This pore length becomes singular at transition porosities, exhi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2012-02, Vol.91 (3), p.741-752
Hauptverfasser: Rozas, R. E., Toledo, P. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 752
container_issue 3
container_start_page 741
container_title Transport in porous media
container_volume 91
creator Rozas, R. E.
Toledo, P. G.
description Pore space microstructure transitions in porous media are investigated by means of simulations of pore networks subject to a random compaction mechanism. With critical path analysis we track the characteristic pore length of the media. This pore length becomes singular at transition porosities, exhibiting kinks and even discontinuities if compaction is strong. The transitions arise from the appearance of new modes in the pore size distribution. Different modes control the transport properties in different porosity intervals where the characteristic pore length is continuous. These continuous pieces of pore length correspond to structurally different media. A transition occurs when the pore fraction controlling flow equals the critical percolation probability of the underlying lattice representing the pore space. To prove the validity of the transitions discovered by simulation we develop an analytical description of the pore-size distribution of media under compaction by using a detailed balance of pore populations. Analytical transition porosities agree precisely with simulations. At the first pore space microstructure transition the change in characteristic length l P exhibits a critical scaling Δ l P α (λ c − λ) υ , with υ  = 1 and λ a compaction factor. Within this approach many aspects of the pore space microstructure transitions observed in the simulations are explained.
doi_str_mv 10.1007/s11242-011-9855-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2258177533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2258177533</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-8de1bea9af7e57e77702909efb4e06806096da8dd8a86482a923f5b87115740d3</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI4-gLuCuIzm5qdJljI4KgzoQtchbVPJMG1q0i58e1M66MpV4Oacc-_5ELoGcgeEyPsEQDnFBABrJQSGE7QCIRmGkvFTtCJQasw0sHN0kdKekOxSfIW2byG6Ig22dkXn6xjSGKd6nPJwjLZPfvShT4XviyHEMKWic423xdQ3LhZ16LJxVlyis9Yekrs6vmv0sX183zzj3evTy-Zhhy0r9YhV46ByVttWOiGdlJJQTbRrK-5IqUhJdNlY1TTKqpIrajVlraiUhNyFk4at0c2SO8TwNbk0mn2YYp9XGkqFAikFY1kFi2ruk6JrzRB9Z-O3AWJmXGbBZTIuM-MykD23x2Sbantoc_nap18jFZxSRudsuuhS_uo_Xfy74P_wH9gWeeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258177533</pqid></control><display><type>article</type><title>Pore space microstructure transitions in porous media under compaction</title><source>SpringerNature Journals</source><creator>Rozas, R. E. ; Toledo, P. G.</creator><creatorcontrib>Rozas, R. E. ; Toledo, P. G.</creatorcontrib><description>Pore space microstructure transitions in porous media are investigated by means of simulations of pore networks subject to a random compaction mechanism. With critical path analysis we track the characteristic pore length of the media. This pore length becomes singular at transition porosities, exhibiting kinks and even discontinuities if compaction is strong. The transitions arise from the appearance of new modes in the pore size distribution. Different modes control the transport properties in different porosity intervals where the characteristic pore length is continuous. These continuous pieces of pore length correspond to structurally different media. A transition occurs when the pore fraction controlling flow equals the critical percolation probability of the underlying lattice representing the pore space. To prove the validity of the transitions discovered by simulation we develop an analytical description of the pore-size distribution of media under compaction by using a detailed balance of pore populations. Analytical transition porosities agree precisely with simulations. At the first pore space microstructure transition the change in characteristic length l P exhibits a critical scaling Δ l P α (λ c − λ) υ , with υ  = 1 and λ a compaction factor. Within this approach many aspects of the pore space microstructure transitions observed in the simulations are explained.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-011-9855-1</identifier><identifier>CODEN: TPMEEI</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Classical and Continuum Physics ; Critical path ; Critical path method ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology. Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Lattice vibration ; Microstructure ; Percolation ; Pore size distribution ; Porosity ; Porous media ; Simulation ; Transport properties</subject><ispartof>Transport in porous media, 2012-02, Vol.91 (3), p.741-752</ispartof><rights>Springer Science+Business Media B.V. 2011</rights><rights>2015 INIST-CNRS</rights><rights>Transport in Porous Media is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-8de1bea9af7e57e77702909efb4e06806096da8dd8a86482a923f5b87115740d3</citedby><cites>FETCH-LOGICAL-a369t-8de1bea9af7e57e77702909efb4e06806096da8dd8a86482a923f5b87115740d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-011-9855-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-011-9855-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25422323$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rozas, R. E.</creatorcontrib><creatorcontrib>Toledo, P. G.</creatorcontrib><title>Pore space microstructure transitions in porous media under compaction</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>Pore space microstructure transitions in porous media are investigated by means of simulations of pore networks subject to a random compaction mechanism. With critical path analysis we track the characteristic pore length of the media. This pore length becomes singular at transition porosities, exhibiting kinks and even discontinuities if compaction is strong. The transitions arise from the appearance of new modes in the pore size distribution. Different modes control the transport properties in different porosity intervals where the characteristic pore length is continuous. These continuous pieces of pore length correspond to structurally different media. A transition occurs when the pore fraction controlling flow equals the critical percolation probability of the underlying lattice representing the pore space. To prove the validity of the transitions discovered by simulation we develop an analytical description of the pore-size distribution of media under compaction by using a detailed balance of pore populations. Analytical transition porosities agree precisely with simulations. At the first pore space microstructure transition the change in characteristic length l P exhibits a critical scaling Δ l P α (λ c − λ) υ , with υ  = 1 and λ a compaction factor. Within this approach many aspects of the pore space microstructure transitions observed in the simulations are explained.</description><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Critical path</subject><subject>Critical path method</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Lattice vibration</subject><subject>Microstructure</subject><subject>Percolation</subject><subject>Pore size distribution</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Simulation</subject><subject>Transport properties</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1KxDAUhYMoOI4-gLuCuIzm5qdJljI4KgzoQtchbVPJMG1q0i58e1M66MpV4Oacc-_5ELoGcgeEyPsEQDnFBABrJQSGE7QCIRmGkvFTtCJQasw0sHN0kdKekOxSfIW2byG6Ig22dkXn6xjSGKd6nPJwjLZPfvShT4XviyHEMKWic423xdQ3LhZ16LJxVlyis9Yekrs6vmv0sX183zzj3evTy-Zhhy0r9YhV46ByVttWOiGdlJJQTbRrK-5IqUhJdNlY1TTKqpIrajVlraiUhNyFk4at0c2SO8TwNbk0mn2YYp9XGkqFAikFY1kFi2ruk6JrzRB9Z-O3AWJmXGbBZTIuM-MykD23x2Sbantoc_nap18jFZxSRudsuuhS_uo_Xfy74P_wH9gWeeE</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Rozas, R. E.</creator><creator>Toledo, P. G.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120201</creationdate><title>Pore space microstructure transitions in porous media under compaction</title><author>Rozas, R. E. ; Toledo, P. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-8de1bea9af7e57e77702909efb4e06806096da8dd8a86482a923f5b87115740d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Critical path</topic><topic>Critical path method</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Lattice vibration</topic><topic>Microstructure</topic><topic>Percolation</topic><topic>Pore size distribution</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Simulation</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozas, R. E.</creatorcontrib><creatorcontrib>Toledo, P. G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozas, R. E.</au><au>Toledo, P. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore space microstructure transitions in porous media under compaction</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>91</volume><issue>3</issue><spage>741</spage><epage>752</epage><pages>741-752</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><coden>TPMEEI</coden><abstract>Pore space microstructure transitions in porous media are investigated by means of simulations of pore networks subject to a random compaction mechanism. With critical path analysis we track the characteristic pore length of the media. This pore length becomes singular at transition porosities, exhibiting kinks and even discontinuities if compaction is strong. The transitions arise from the appearance of new modes in the pore size distribution. Different modes control the transport properties in different porosity intervals where the characteristic pore length is continuous. These continuous pieces of pore length correspond to structurally different media. A transition occurs when the pore fraction controlling flow equals the critical percolation probability of the underlying lattice representing the pore space. To prove the validity of the transitions discovered by simulation we develop an analytical description of the pore-size distribution of media under compaction by using a detailed balance of pore populations. Analytical transition porosities agree precisely with simulations. At the first pore space microstructure transition the change in characteristic length l P exhibits a critical scaling Δ l P α (λ c − λ) υ , with υ  = 1 and λ a compaction factor. Within this approach many aspects of the pore space microstructure transitions observed in the simulations are explained.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-011-9855-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2012-02, Vol.91 (3), p.741-752
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2258177533
source SpringerNature Journals
subjects Civil Engineering
Classical and Continuum Physics
Critical path
Critical path method
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Exact sciences and technology
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology. Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Lattice vibration
Microstructure
Percolation
Pore size distribution
Porosity
Porous media
Simulation
Transport properties
title Pore space microstructure transitions in porous media under compaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore%20space%20microstructure%20transitions%20in%20porous%20media%20under%20compaction&rft.jtitle=Transport%20in%20porous%20media&rft.au=Rozas,%20R.%20E.&rft.date=2012-02-01&rft.volume=91&rft.issue=3&rft.spage=741&rft.epage=752&rft.pages=741-752&rft.issn=0169-3913&rft.eissn=1573-1634&rft.coden=TPMEEI&rft_id=info:doi/10.1007/s11242-011-9855-1&rft_dat=%3Cproquest_cross%3E2258177533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258177533&rft_id=info:pmid/&rfr_iscdi=true