A Pore-Scale Numerical Simulation Method for Estimating the Permeability of Sand Sediment

A numerical method system to estimate the permeability of sand sediments, at a microscopic scale, was developed. Initially, 3D geometrical representations of the sand grains are reconstructed from a series of 2D X-ray CT scans of real sand grains. 2D cross-sectional slices of the grain outlines are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2012-08, Vol.94 (1), p.1-17
Hauptverfasser: Sugita, Toshio, Sato, Toru, Hirabayashi, Shinichiro, Nagao, Jiro, Jin, Yusuke, Kiyono, Fumio, Ebinuma, Takao, Narita, Hideo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 1
container_title Transport in porous media
container_volume 94
creator Sugita, Toshio
Sato, Toru
Hirabayashi, Shinichiro
Nagao, Jiro
Jin, Yusuke
Kiyono, Fumio
Ebinuma, Takao
Narita, Hideo
description A numerical method system to estimate the permeability of sand sediments, at a microscopic scale, was developed. Initially, 3D geometrical representations of the sand grains are reconstructed from a series of 2D X-ray CT scans of real sand grains. 2D cross-sectional slices of the grain outlines are combined together to produce 3D objects via spherical harmonics series expansions. Then, the reconstructed sand grains are packed randomly inside a cubic, microscopic, domain by a combination of a growth method and a simulated annealing method to achieve a predefined porosity. Finally, a single-phase water flow within the domain was simulated numerically, using the lattice Boltzmann method. The calculated permeability of these systems compares well with the values provided by conventional theoretical models. One of the contributions of this study is to show that it is possible to predict the permeability of sand sediments of variable porosities, using sand grains from CT images with changing size distributions and orientations.
doi_str_mv 10.1007/s11242-012-9975-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2258162623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2258162623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-b95cdff7061d49e0bc9a895e621db9646e679ed6631c30a7ce77880a7876d3593</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwsIY4Gr53Y8bGqyo9UoFLhwMlykk2bqkmKnR769rgKghMnj-yZ2fVHyDXwO-Bc3wcAkQjGQTBjdMrECRlBqiUDJZNTMuKgDJMG5Dm5CGHDeUxlyYh8Tuii88iWhdsifd036Oso6bJu9lvX111LX7BfdyWtOk9noa-beNuuaL9GukDfoMvrbd0faFfRpWtLusSybrDtL8lZ5bYBr37OMfl4mL1Pn9j87fF5OpkzJ5XpWW7SoqwqzRWUiUGeF8ZlJkUloMyNShQqbbBUSkIhudMFap1lUWRalTI1ckxuht6d7772GHq76fa-jSOtEGkGSighowsGV-G7EDxWdufjV_zBArdHgnYgaCNBeyRoRczc_jS7EJlU3rVFHX6DQkGSpBKiTwy-EJ_aFfq_Df4v_wbCB39k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258162623</pqid></control><display><type>article</type><title>A Pore-Scale Numerical Simulation Method for Estimating the Permeability of Sand Sediment</title><source>SpringerLink Journals</source><creator>Sugita, Toshio ; Sato, Toru ; Hirabayashi, Shinichiro ; Nagao, Jiro ; Jin, Yusuke ; Kiyono, Fumio ; Ebinuma, Takao ; Narita, Hideo</creator><creatorcontrib>Sugita, Toshio ; Sato, Toru ; Hirabayashi, Shinichiro ; Nagao, Jiro ; Jin, Yusuke ; Kiyono, Fumio ; Ebinuma, Takao ; Narita, Hideo</creatorcontrib><description>A numerical method system to estimate the permeability of sand sediments, at a microscopic scale, was developed. Initially, 3D geometrical representations of the sand grains are reconstructed from a series of 2D X-ray CT scans of real sand grains. 2D cross-sectional slices of the grain outlines are combined together to produce 3D objects via spherical harmonics series expansions. Then, the reconstructed sand grains are packed randomly inside a cubic, microscopic, domain by a combination of a growth method and a simulated annealing method to achieve a predefined porosity. Finally, a single-phase water flow within the domain was simulated numerically, using the lattice Boltzmann method. The calculated permeability of these systems compares well with the values provided by conventional theoretical models. One of the contributions of this study is to show that it is possible to predict the permeability of sand sediments of variable porosities, using sand grains from CT images with changing size distributions and orientations.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-012-9975-2</identifier><identifier>CODEN: TPMEEI</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Classical and Continuum Physics ; Computational fluid dynamics ; Computed tomography ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Geotechnical Engineering &amp; Applied Earth Sciences ; Grains ; Hydrocarbons ; Hydrogeology ; Hydrology. Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Mathematical analysis ; Mathematical models ; Numerical methods ; Permeability ; Pollution, environment geology ; Porosity ; Sand ; Sedimentary rocks ; Sediments ; Simulated annealing ; Simulation ; Spherical harmonics ; Water flow</subject><ispartof>Transport in porous media, 2012-08, Vol.94 (1), p.1-17</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>2015 INIST-CNRS</rights><rights>Transport in Porous Media is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-b95cdff7061d49e0bc9a895e621db9646e679ed6631c30a7ce77880a7876d3593</citedby><cites>FETCH-LOGICAL-a369t-b95cdff7061d49e0bc9a895e621db9646e679ed6631c30a7ce77880a7876d3593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-012-9975-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-012-9975-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26144531$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sugita, Toshio</creatorcontrib><creatorcontrib>Sato, Toru</creatorcontrib><creatorcontrib>Hirabayashi, Shinichiro</creatorcontrib><creatorcontrib>Nagao, Jiro</creatorcontrib><creatorcontrib>Jin, Yusuke</creatorcontrib><creatorcontrib>Kiyono, Fumio</creatorcontrib><creatorcontrib>Ebinuma, Takao</creatorcontrib><creatorcontrib>Narita, Hideo</creatorcontrib><title>A Pore-Scale Numerical Simulation Method for Estimating the Permeability of Sand Sediment</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>A numerical method system to estimate the permeability of sand sediments, at a microscopic scale, was developed. Initially, 3D geometrical representations of the sand grains are reconstructed from a series of 2D X-ray CT scans of real sand grains. 2D cross-sectional slices of the grain outlines are combined together to produce 3D objects via spherical harmonics series expansions. Then, the reconstructed sand grains are packed randomly inside a cubic, microscopic, domain by a combination of a growth method and a simulated annealing method to achieve a predefined porosity. Finally, a single-phase water flow within the domain was simulated numerically, using the lattice Boltzmann method. The calculated permeability of these systems compares well with the values provided by conventional theoretical models. One of the contributions of this study is to show that it is possible to predict the permeability of sand sediments of variable porosities, using sand grains from CT images with changing size distributions and orientations.</description><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Grains</subject><subject>Hydrocarbons</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Permeability</subject><subject>Pollution, environment geology</subject><subject>Porosity</subject><subject>Sand</subject><subject>Sedimentary rocks</subject><subject>Sediments</subject><subject>Simulated annealing</subject><subject>Simulation</subject><subject>Spherical harmonics</subject><subject>Water flow</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1OwzAQhC0EEqXwANwsIY4Gr53Y8bGqyo9UoFLhwMlykk2bqkmKnR769rgKghMnj-yZ2fVHyDXwO-Bc3wcAkQjGQTBjdMrECRlBqiUDJZNTMuKgDJMG5Dm5CGHDeUxlyYh8Tuii88iWhdsifd036Oso6bJu9lvX111LX7BfdyWtOk9noa-beNuuaL9GukDfoMvrbd0faFfRpWtLusSybrDtL8lZ5bYBr37OMfl4mL1Pn9j87fF5OpkzJ5XpWW7SoqwqzRWUiUGeF8ZlJkUloMyNShQqbbBUSkIhudMFap1lUWRalTI1ckxuht6d7772GHq76fa-jSOtEGkGSighowsGV-G7EDxWdufjV_zBArdHgnYgaCNBeyRoRczc_jS7EJlU3rVFHX6DQkGSpBKiTwy-EJ_aFfq_Df4v_wbCB39k</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Sugita, Toshio</creator><creator>Sato, Toru</creator><creator>Hirabayashi, Shinichiro</creator><creator>Nagao, Jiro</creator><creator>Jin, Yusuke</creator><creator>Kiyono, Fumio</creator><creator>Ebinuma, Takao</creator><creator>Narita, Hideo</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120801</creationdate><title>A Pore-Scale Numerical Simulation Method for Estimating the Permeability of Sand Sediment</title><author>Sugita, Toshio ; Sato, Toru ; Hirabayashi, Shinichiro ; Nagao, Jiro ; Jin, Yusuke ; Kiyono, Fumio ; Ebinuma, Takao ; Narita, Hideo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-b95cdff7061d49e0bc9a895e621db9646e679ed6631c30a7ce77880a7876d3593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Grains</topic><topic>Hydrocarbons</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Permeability</topic><topic>Pollution, environment geology</topic><topic>Porosity</topic><topic>Sand</topic><topic>Sedimentary rocks</topic><topic>Sediments</topic><topic>Simulated annealing</topic><topic>Simulation</topic><topic>Spherical harmonics</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugita, Toshio</creatorcontrib><creatorcontrib>Sato, Toru</creatorcontrib><creatorcontrib>Hirabayashi, Shinichiro</creatorcontrib><creatorcontrib>Nagao, Jiro</creatorcontrib><creatorcontrib>Jin, Yusuke</creatorcontrib><creatorcontrib>Kiyono, Fumio</creatorcontrib><creatorcontrib>Ebinuma, Takao</creatorcontrib><creatorcontrib>Narita, Hideo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugita, Toshio</au><au>Sato, Toru</au><au>Hirabayashi, Shinichiro</au><au>Nagao, Jiro</au><au>Jin, Yusuke</au><au>Kiyono, Fumio</au><au>Ebinuma, Takao</au><au>Narita, Hideo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pore-Scale Numerical Simulation Method for Estimating the Permeability of Sand Sediment</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>94</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><coden>TPMEEI</coden><abstract>A numerical method system to estimate the permeability of sand sediments, at a microscopic scale, was developed. Initially, 3D geometrical representations of the sand grains are reconstructed from a series of 2D X-ray CT scans of real sand grains. 2D cross-sectional slices of the grain outlines are combined together to produce 3D objects via spherical harmonics series expansions. Then, the reconstructed sand grains are packed randomly inside a cubic, microscopic, domain by a combination of a growth method and a simulated annealing method to achieve a predefined porosity. Finally, a single-phase water flow within the domain was simulated numerically, using the lattice Boltzmann method. The calculated permeability of these systems compares well with the values provided by conventional theoretical models. One of the contributions of this study is to show that it is possible to predict the permeability of sand sediments of variable porosities, using sand grains from CT images with changing size distributions and orientations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-012-9975-2</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2012-08, Vol.94 (1), p.1-17
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2258162623
source SpringerLink Journals
subjects Civil Engineering
Classical and Continuum Physics
Computational fluid dynamics
Computed tomography
Computer simulation
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Geotechnical Engineering & Applied Earth Sciences
Grains
Hydrocarbons
Hydrogeology
Hydrology. Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Mathematical analysis
Mathematical models
Numerical methods
Permeability
Pollution, environment geology
Porosity
Sand
Sedimentary rocks
Sediments
Simulated annealing
Simulation
Spherical harmonics
Water flow
title A Pore-Scale Numerical Simulation Method for Estimating the Permeability of Sand Sediment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pore-Scale%20Numerical%20Simulation%20Method%20for%20Estimating%20the%20Permeability%20of%20Sand%20Sediment&rft.jtitle=Transport%20in%20porous%20media&rft.au=Sugita,%20Toshio&rft.date=2012-08-01&rft.volume=94&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0169-3913&rft.eissn=1573-1634&rft.coden=TPMEEI&rft_id=info:doi/10.1007/s11242-012-9975-2&rft_dat=%3Cproquest_cross%3E2258162623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258162623&rft_id=info:pmid/&rfr_iscdi=true