A Pore-Scale Numerical Simulation Method for Estimating the Permeability of Sand Sediment
A numerical method system to estimate the permeability of sand sediments, at a microscopic scale, was developed. Initially, 3D geometrical representations of the sand grains are reconstructed from a series of 2D X-ray CT scans of real sand grains. 2D cross-sectional slices of the grain outlines are...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2012-08, Vol.94 (1), p.1-17 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Transport in porous media |
container_volume | 94 |
creator | Sugita, Toshio Sato, Toru Hirabayashi, Shinichiro Nagao, Jiro Jin, Yusuke Kiyono, Fumio Ebinuma, Takao Narita, Hideo |
description | A numerical method system to estimate the permeability of sand sediments, at a microscopic scale, was developed. Initially, 3D geometrical representations of the sand grains are reconstructed from a series of 2D X-ray CT scans of real sand grains. 2D cross-sectional slices of the grain outlines are combined together to produce 3D objects via spherical harmonics series expansions. Then, the reconstructed sand grains are packed randomly inside a cubic, microscopic, domain by a combination of a growth method and a simulated annealing method to achieve a predefined porosity. Finally, a single-phase water flow within the domain was simulated numerically, using the lattice Boltzmann method. The calculated permeability of these systems compares well with the values provided by conventional theoretical models. One of the contributions of this study is to show that it is possible to predict the permeability of sand sediments of variable porosities, using sand grains from CT images with changing size distributions and orientations. |
doi_str_mv | 10.1007/s11242-012-9975-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2258162623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2258162623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-b95cdff7061d49e0bc9a895e621db9646e679ed6631c30a7ce77880a7876d3593</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwsIY4Gr53Y8bGqyo9UoFLhwMlykk2bqkmKnR769rgKghMnj-yZ2fVHyDXwO-Bc3wcAkQjGQTBjdMrECRlBqiUDJZNTMuKgDJMG5Dm5CGHDeUxlyYh8Tuii88iWhdsifd036Oso6bJu9lvX111LX7BfdyWtOk9noa-beNuuaL9GukDfoMvrbd0faFfRpWtLusSybrDtL8lZ5bYBr37OMfl4mL1Pn9j87fF5OpkzJ5XpWW7SoqwqzRWUiUGeF8ZlJkUloMyNShQqbbBUSkIhudMFap1lUWRalTI1ckxuht6d7772GHq76fa-jSOtEGkGSighowsGV-G7EDxWdufjV_zBArdHgnYgaCNBeyRoRczc_jS7EJlU3rVFHX6DQkGSpBKiTwy-EJ_aFfq_Df4v_wbCB39k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258162623</pqid></control><display><type>article</type><title>A Pore-Scale Numerical Simulation Method for Estimating the Permeability of Sand Sediment</title><source>SpringerLink Journals</source><creator>Sugita, Toshio ; Sato, Toru ; Hirabayashi, Shinichiro ; Nagao, Jiro ; Jin, Yusuke ; Kiyono, Fumio ; Ebinuma, Takao ; Narita, Hideo</creator><creatorcontrib>Sugita, Toshio ; Sato, Toru ; Hirabayashi, Shinichiro ; Nagao, Jiro ; Jin, Yusuke ; Kiyono, Fumio ; Ebinuma, Takao ; Narita, Hideo</creatorcontrib><description>A numerical method system to estimate the permeability of sand sediments, at a microscopic scale, was developed. Initially, 3D geometrical representations of the sand grains are reconstructed from a series of 2D X-ray CT scans of real sand grains. 2D cross-sectional slices of the grain outlines are combined together to produce 3D objects via spherical harmonics series expansions. Then, the reconstructed sand grains are packed randomly inside a cubic, microscopic, domain by a combination of a growth method and a simulated annealing method to achieve a predefined porosity. Finally, a single-phase water flow within the domain was simulated numerically, using the lattice Boltzmann method. The calculated permeability of these systems compares well with the values provided by conventional theoretical models. One of the contributions of this study is to show that it is possible to predict the permeability of sand sediments of variable porosities, using sand grains from CT images with changing size distributions and orientations.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-012-9975-2</identifier><identifier>CODEN: TPMEEI</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Classical and Continuum Physics ; Computational fluid dynamics ; Computed tomography ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Geotechnical Engineering & Applied Earth Sciences ; Grains ; Hydrocarbons ; Hydrogeology ; Hydrology. Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Mathematical analysis ; Mathematical models ; Numerical methods ; Permeability ; Pollution, environment geology ; Porosity ; Sand ; Sedimentary rocks ; Sediments ; Simulated annealing ; Simulation ; Spherical harmonics ; Water flow</subject><ispartof>Transport in porous media, 2012-08, Vol.94 (1), p.1-17</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>2015 INIST-CNRS</rights><rights>Transport in Porous Media is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-b95cdff7061d49e0bc9a895e621db9646e679ed6631c30a7ce77880a7876d3593</citedby><cites>FETCH-LOGICAL-a369t-b95cdff7061d49e0bc9a895e621db9646e679ed6631c30a7ce77880a7876d3593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-012-9975-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-012-9975-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26144531$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sugita, Toshio</creatorcontrib><creatorcontrib>Sato, Toru</creatorcontrib><creatorcontrib>Hirabayashi, Shinichiro</creatorcontrib><creatorcontrib>Nagao, Jiro</creatorcontrib><creatorcontrib>Jin, Yusuke</creatorcontrib><creatorcontrib>Kiyono, Fumio</creatorcontrib><creatorcontrib>Ebinuma, Takao</creatorcontrib><creatorcontrib>Narita, Hideo</creatorcontrib><title>A Pore-Scale Numerical Simulation Method for Estimating the Permeability of Sand Sediment</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>A numerical method system to estimate the permeability of sand sediments, at a microscopic scale, was developed. Initially, 3D geometrical representations of the sand grains are reconstructed from a series of 2D X-ray CT scans of real sand grains. 2D cross-sectional slices of the grain outlines are combined together to produce 3D objects via spherical harmonics series expansions. Then, the reconstructed sand grains are packed randomly inside a cubic, microscopic, domain by a combination of a growth method and a simulated annealing method to achieve a predefined porosity. Finally, a single-phase water flow within the domain was simulated numerically, using the lattice Boltzmann method. The calculated permeability of these systems compares well with the values provided by conventional theoretical models. One of the contributions of this study is to show that it is possible to predict the permeability of sand sediments of variable porosities, using sand grains from CT images with changing size distributions and orientations.</description><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Grains</subject><subject>Hydrocarbons</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Permeability</subject><subject>Pollution, environment geology</subject><subject>Porosity</subject><subject>Sand</subject><subject>Sedimentary rocks</subject><subject>Sediments</subject><subject>Simulated annealing</subject><subject>Simulation</subject><subject>Spherical harmonics</subject><subject>Water flow</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1OwzAQhC0EEqXwANwsIY4Gr53Y8bGqyo9UoFLhwMlykk2bqkmKnR769rgKghMnj-yZ2fVHyDXwO-Bc3wcAkQjGQTBjdMrECRlBqiUDJZNTMuKgDJMG5Dm5CGHDeUxlyYh8Tuii88iWhdsifd036Oso6bJu9lvX111LX7BfdyWtOk9noa-beNuuaL9GukDfoMvrbd0faFfRpWtLusSybrDtL8lZ5bYBr37OMfl4mL1Pn9j87fF5OpkzJ5XpWW7SoqwqzRWUiUGeF8ZlJkUloMyNShQqbbBUSkIhudMFap1lUWRalTI1ckxuht6d7772GHq76fa-jSOtEGkGSighowsGV-G7EDxWdufjV_zBArdHgnYgaCNBeyRoRczc_jS7EJlU3rVFHX6DQkGSpBKiTwy-EJ_aFfq_Df4v_wbCB39k</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Sugita, Toshio</creator><creator>Sato, Toru</creator><creator>Hirabayashi, Shinichiro</creator><creator>Nagao, Jiro</creator><creator>Jin, Yusuke</creator><creator>Kiyono, Fumio</creator><creator>Ebinuma, Takao</creator><creator>Narita, Hideo</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120801</creationdate><title>A Pore-Scale Numerical Simulation Method for Estimating the Permeability of Sand Sediment</title><author>Sugita, Toshio ; Sato, Toru ; Hirabayashi, Shinichiro ; Nagao, Jiro ; Jin, Yusuke ; Kiyono, Fumio ; Ebinuma, Takao ; Narita, Hideo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-b95cdff7061d49e0bc9a895e621db9646e679ed6631c30a7ce77880a7876d3593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Grains</topic><topic>Hydrocarbons</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Permeability</topic><topic>Pollution, environment geology</topic><topic>Porosity</topic><topic>Sand</topic><topic>Sedimentary rocks</topic><topic>Sediments</topic><topic>Simulated annealing</topic><topic>Simulation</topic><topic>Spherical harmonics</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugita, Toshio</creatorcontrib><creatorcontrib>Sato, Toru</creatorcontrib><creatorcontrib>Hirabayashi, Shinichiro</creatorcontrib><creatorcontrib>Nagao, Jiro</creatorcontrib><creatorcontrib>Jin, Yusuke</creatorcontrib><creatorcontrib>Kiyono, Fumio</creatorcontrib><creatorcontrib>Ebinuma, Takao</creatorcontrib><creatorcontrib>Narita, Hideo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugita, Toshio</au><au>Sato, Toru</au><au>Hirabayashi, Shinichiro</au><au>Nagao, Jiro</au><au>Jin, Yusuke</au><au>Kiyono, Fumio</au><au>Ebinuma, Takao</au><au>Narita, Hideo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pore-Scale Numerical Simulation Method for Estimating the Permeability of Sand Sediment</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>94</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><coden>TPMEEI</coden><abstract>A numerical method system to estimate the permeability of sand sediments, at a microscopic scale, was developed. Initially, 3D geometrical representations of the sand grains are reconstructed from a series of 2D X-ray CT scans of real sand grains. 2D cross-sectional slices of the grain outlines are combined together to produce 3D objects via spherical harmonics series expansions. Then, the reconstructed sand grains are packed randomly inside a cubic, microscopic, domain by a combination of a growth method and a simulated annealing method to achieve a predefined porosity. Finally, a single-phase water flow within the domain was simulated numerically, using the lattice Boltzmann method. The calculated permeability of these systems compares well with the values provided by conventional theoretical models. One of the contributions of this study is to show that it is possible to predict the permeability of sand sediments of variable porosities, using sand grains from CT images with changing size distributions and orientations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-012-9975-2</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2012-08, Vol.94 (1), p.1-17 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_proquest_journals_2258162623 |
source | SpringerLink Journals |
subjects | Civil Engineering Classical and Continuum Physics Computational fluid dynamics Computed tomography Computer simulation Earth and Environmental Science Earth Sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology Geotechnical Engineering & Applied Earth Sciences Grains Hydrocarbons Hydrogeology Hydrology. Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Mathematical analysis Mathematical models Numerical methods Permeability Pollution, environment geology Porosity Sand Sedimentary rocks Sediments Simulated annealing Simulation Spherical harmonics Water flow |
title | A Pore-Scale Numerical Simulation Method for Estimating the Permeability of Sand Sediment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pore-Scale%20Numerical%20Simulation%20Method%20for%20Estimating%20the%20Permeability%20of%20Sand%20Sediment&rft.jtitle=Transport%20in%20porous%20media&rft.au=Sugita,%20Toshio&rft.date=2012-08-01&rft.volume=94&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0169-3913&rft.eissn=1573-1634&rft.coden=TPMEEI&rft_id=info:doi/10.1007/s11242-012-9975-2&rft_dat=%3Cproquest_cross%3E2258162623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258162623&rft_id=info:pmid/&rfr_iscdi=true |