A Multi-Scale Approach to Model Two-Phase Flow in Heterogeneous Porous Media

The immiscible displacement of a wetting fluid by a non-wetting one in heterogeneous porous media is modeled using a multi-scale network-type analysis: (1) The pressure-controlled immiscible displacement of water by oil in pore-and-throat networks (1st length scale ~ 1 mm) is simulated as a capillar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2012-09, Vol.94 (2), p.525-536
1. Verfasser: Tsakiroglou, Christos D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 536
container_issue 2
container_start_page 525
container_title Transport in porous media
container_volume 94
creator Tsakiroglou, Christos D.
description The immiscible displacement of a wetting fluid by a non-wetting one in heterogeneous porous media is modeled using a multi-scale network-type analysis: (1) The pressure-controlled immiscible displacement of water by oil in pore-and-throat networks (1st length scale ~ 1 mm) is simulated as a capillary-driven process. (2) The pressure-controlled immiscible displacement in uncorrelated cubic lattices (2nd length scale ~ 1 cm) is simulated as a site percolation process governed by capillary and gravity forces. At this scale, each node represents a network of the previous scale. (3) The rate-controlled immiscible displacement of water by oil in cubic networks (3rd length scale ~ 10 cm), where each node represents a lattice of the previous scale, is simulated by accounting for capillary, gravity, and viscous forces. The multi-scale approach along with the information concerning the pore structure properties of the porous medium can be employed to determine the transient responses of the pressure drop and axial distribution of water saturation, and estimate the effective (up-scaled) relative permeability functions. The method is demonstrated with application to data of highly heterogeneous soils.
doi_str_mv 10.1007/s11242-011-9882-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2258151912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2258151912</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-d62005c96d3126a9412b6653e4f72d616af0d2a162c7b531a6f38e6e8ac77af3</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLeAz9HcpE2bxzGcEzYcuPeQtbdbR21m0jL2702p4JNP5-V8514-Qh6BPwPn2UsAEIlgHIDpPBfsckUmkGaSgZLJNZlwUJpJDfKW3IVw5DxSeTIhqxld901Xs8_CNkhnp5N3tjjQztG1K7Gh27Njm4MNSBeNO9O6pUvs0Ls9tuj6QDfOD7HGsrb35KayTcCH35yS7eJ1O1-y1cfb-3y2YlZK3bFSCc7TQqtSglBWJyB2SqUSkyoTpQJlK14KC0oU2S6VYFUlc1SY2yLLbCWn5Gmcjb9-9xg6c3S9b-NFI0SaQwoaRGzB2Cq8C8FjZU6-_rL-YoCbwZkZnZnozAzOzCUyYmRC7LZ79H_L_0M_5EhtpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258151912</pqid></control><display><type>article</type><title>A Multi-Scale Approach to Model Two-Phase Flow in Heterogeneous Porous Media</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tsakiroglou, Christos D.</creator><creatorcontrib>Tsakiroglou, Christos D.</creatorcontrib><description>The immiscible displacement of a wetting fluid by a non-wetting one in heterogeneous porous media is modeled using a multi-scale network-type analysis: (1) The pressure-controlled immiscible displacement of water by oil in pore-and-throat networks (1st length scale ~ 1 mm) is simulated as a capillary-driven process. (2) The pressure-controlled immiscible displacement in uncorrelated cubic lattices (2nd length scale ~ 1 cm) is simulated as a site percolation process governed by capillary and gravity forces. At this scale, each node represents a network of the previous scale. (3) The rate-controlled immiscible displacement of water by oil in cubic networks (3rd length scale ~ 10 cm), where each node represents a lattice of the previous scale, is simulated by accounting for capillary, gravity, and viscous forces. The multi-scale approach along with the information concerning the pore structure properties of the porous medium can be employed to determine the transient responses of the pressure drop and axial distribution of water saturation, and estimate the effective (up-scaled) relative permeability functions. The method is demonstrated with application to data of highly heterogeneous soils.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-011-9882-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Capillary pressure ; Civil Engineering ; Classical and Continuum Physics ; Computer simulation ; Displacements (lattice) ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering &amp; Applied Earth Sciences ; Gravitation ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Lattices ; Miscibility ; Multiscale analysis ; Percolation ; Porosity ; Porous media ; Pressure drop ; Soil permeability ; Stress concentration ; Transient response ; Two phase flow ; Wetting</subject><ispartof>Transport in porous media, 2012-09, Vol.94 (2), p.525-536</ispartof><rights>Springer Science+Business Media B.V. 2011</rights><rights>Transport in Porous Media is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-d62005c96d3126a9412b6653e4f72d616af0d2a162c7b531a6f38e6e8ac77af3</citedby><cites>FETCH-LOGICAL-a339t-d62005c96d3126a9412b6653e4f72d616af0d2a162c7b531a6f38e6e8ac77af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-011-9882-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-011-9882-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tsakiroglou, Christos D.</creatorcontrib><title>A Multi-Scale Approach to Model Two-Phase Flow in Heterogeneous Porous Media</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>The immiscible displacement of a wetting fluid by a non-wetting one in heterogeneous porous media is modeled using a multi-scale network-type analysis: (1) The pressure-controlled immiscible displacement of water by oil in pore-and-throat networks (1st length scale ~ 1 mm) is simulated as a capillary-driven process. (2) The pressure-controlled immiscible displacement in uncorrelated cubic lattices (2nd length scale ~ 1 cm) is simulated as a site percolation process governed by capillary and gravity forces. At this scale, each node represents a network of the previous scale. (3) The rate-controlled immiscible displacement of water by oil in cubic networks (3rd length scale ~ 10 cm), where each node represents a lattice of the previous scale, is simulated by accounting for capillary, gravity, and viscous forces. The multi-scale approach along with the information concerning the pore structure properties of the porous medium can be employed to determine the transient responses of the pressure drop and axial distribution of water saturation, and estimate the effective (up-scaled) relative permeability functions. The method is demonstrated with application to data of highly heterogeneous soils.</description><subject>Capillary pressure</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computer simulation</subject><subject>Displacements (lattice)</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Gravitation</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Lattices</subject><subject>Miscibility</subject><subject>Multiscale analysis</subject><subject>Percolation</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Pressure drop</subject><subject>Soil permeability</subject><subject>Stress concentration</subject><subject>Transient response</subject><subject>Two phase flow</subject><subject>Wetting</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kFFLwzAUhYMoOKc_wLeAz9HcpE2bxzGcEzYcuPeQtbdbR21m0jL2702p4JNP5-V8514-Qh6BPwPn2UsAEIlgHIDpPBfsckUmkGaSgZLJNZlwUJpJDfKW3IVw5DxSeTIhqxld901Xs8_CNkhnp5N3tjjQztG1K7Gh27Njm4MNSBeNO9O6pUvs0Ls9tuj6QDfOD7HGsrb35KayTcCH35yS7eJ1O1-y1cfb-3y2YlZK3bFSCc7TQqtSglBWJyB2SqUSkyoTpQJlK14KC0oU2S6VYFUlc1SY2yLLbCWn5Gmcjb9-9xg6c3S9b-NFI0SaQwoaRGzB2Cq8C8FjZU6-_rL-YoCbwZkZnZnozAzOzCUyYmRC7LZ79H_L_0M_5EhtpQ</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Tsakiroglou, Christos D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120901</creationdate><title>A Multi-Scale Approach to Model Two-Phase Flow in Heterogeneous Porous Media</title><author>Tsakiroglou, Christos D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-d62005c96d3126a9412b6653e4f72d616af0d2a162c7b531a6f38e6e8ac77af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Capillary pressure</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computer simulation</topic><topic>Displacements (lattice)</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Gravitation</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Lattices</topic><topic>Miscibility</topic><topic>Multiscale analysis</topic><topic>Percolation</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Pressure drop</topic><topic>Soil permeability</topic><topic>Stress concentration</topic><topic>Transient response</topic><topic>Two phase flow</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsakiroglou, Christos D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsakiroglou, Christos D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Scale Approach to Model Two-Phase Flow in Heterogeneous Porous Media</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>94</volume><issue>2</issue><spage>525</spage><epage>536</epage><pages>525-536</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>The immiscible displacement of a wetting fluid by a non-wetting one in heterogeneous porous media is modeled using a multi-scale network-type analysis: (1) The pressure-controlled immiscible displacement of water by oil in pore-and-throat networks (1st length scale ~ 1 mm) is simulated as a capillary-driven process. (2) The pressure-controlled immiscible displacement in uncorrelated cubic lattices (2nd length scale ~ 1 cm) is simulated as a site percolation process governed by capillary and gravity forces. At this scale, each node represents a network of the previous scale. (3) The rate-controlled immiscible displacement of water by oil in cubic networks (3rd length scale ~ 10 cm), where each node represents a lattice of the previous scale, is simulated by accounting for capillary, gravity, and viscous forces. The multi-scale approach along with the information concerning the pore structure properties of the porous medium can be employed to determine the transient responses of the pressure drop and axial distribution of water saturation, and estimate the effective (up-scaled) relative permeability functions. The method is demonstrated with application to data of highly heterogeneous soils.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-011-9882-y</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2012-09, Vol.94 (2), p.525-536
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2258151912
source SpringerLink Journals - AutoHoldings
subjects Capillary pressure
Civil Engineering
Classical and Continuum Physics
Computer simulation
Displacements (lattice)
Earth and Environmental Science
Earth Sciences
Geotechnical Engineering & Applied Earth Sciences
Gravitation
Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Lattices
Miscibility
Multiscale analysis
Percolation
Porosity
Porous media
Pressure drop
Soil permeability
Stress concentration
Transient response
Two phase flow
Wetting
title A Multi-Scale Approach to Model Two-Phase Flow in Heterogeneous Porous Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Scale%20Approach%20to%20Model%20Two-Phase%20Flow%20in%20Heterogeneous%20Porous%20Media&rft.jtitle=Transport%20in%20porous%20media&rft.au=Tsakiroglou,%20Christos%20D.&rft.date=2012-09-01&rft.volume=94&rft.issue=2&rft.spage=525&rft.epage=536&rft.pages=525-536&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-011-9882-y&rft_dat=%3Cproquest_cross%3E2258151912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258151912&rft_id=info:pmid/&rfr_iscdi=true