Coexistence of induced superconductivity and quantum Hall states in InSb nanosheets
Hybrid superconducting devices based on high-mobility two-dimensional electron gases with strong spin-orbit coupling are considered to offer a flexible and scalable platform for topological quantum computation. Here, we report the realization and electrical characterization of hybrid devices based o...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2019-06, Vol.99 (24), p.1, Article 245302 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hybrid superconducting devices based on high-mobility two-dimensional electron gases with strong spin-orbit coupling are considered to offer a flexible and scalable platform for topological quantum computation. Here, we report the realization and electrical characterization of hybrid devices based on high-quality InSb nanosheets and superconducting niobium (Nb) electrodes. In these hybrid devices, we observe gate-tunable proximity-induced supercurrent and multiple Andreev reflections, indicating a transparent Nb-InSb nanosheet interface. The high critical magnetic field of Nb combined with high-mobility InSb nanosheets allows us to exploit the transport properties in the exotic regime where the superconducting proximity effect coexists with the quantum Hall effect. Transport spectroscopy measurements in such a regime reveal an enhancement of the conductance at the quantum Hall plateaus, accompanied by a pronounced zero-bias peak in the differential conductance. We discuss that these features originate from the formation of Andreev edge states at the superconductor-InSb nanosheet interface in the quantum Hall regime. In addition to shedding light on the interplay between superconductivity and quantum Hall effect, our work opens a new possibility to develop hybrid superconducting devices based on 2D semiconductor nanosheets with strong spin-orbit coupling. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.99.245302 |