Bending analysis of elastically connected Euler–Bernoulli double-beam system using the direct boundary element method

•A direct BEM solution is established for static analysis of Euler–Bernoulli double-beam system.•Fundamental solutions, integral and algebraic equations are established.•Influence matrices and load vectors are explicitly shown.•Results confirm the effectiveness and correctness of this proposed BEM f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling 2019-10, Vol.74, p.387-408
Hauptverfasser: Brito, W.K.F., Maia, C.D.C.D., Mendonca, A.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 408
container_issue
container_start_page 387
container_title Applied Mathematical Modelling
container_volume 74
creator Brito, W.K.F.
Maia, C.D.C.D.
Mendonca, A.V.
description •A direct BEM solution is established for static analysis of Euler–Bernoulli double-beam system.•Fundamental solutions, integral and algebraic equations are established.•Influence matrices and load vectors are explicitly shown.•Results confirm the effectiveness and correctness of this proposed BEM formulation. Double and multiple-Beam System (BS) models are structural models that idealize a system of beams interconnected by elastic layers, where beam theories are assumed to govern the beams and elastic foundation models are assumed to represent the elastic layers. Many engineering problems have been studied using BS models such as double and multiple pipeline systems, sandwich beams, adhesively bonded joints, continuous dynamic vibration absorbers, and floating-slab tracks. This paper presents for the first time a direct Boundary Element Method (BEM) formulation for bending of Euler–Bernoulli double-beam system connected by a Pasternak elastic layer. All of the mathematical steps required to establish the direct BEM solution are addressed. Discussions deriving explicit solutions for double-beam fundamental problem are presented. Integral and algebraic equations are derived where influence matrices and load vectors of double-beam systems are explicitly shown. Finally, numerical results are presented for differing cases involving static loads and boundary conditions.
doi_str_mv 10.1016/j.apm.2019.04.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2258134382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X19302653</els_id><sourcerecordid>2258134382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d22c21ec1420190a2eb4278735bfa8bf438f99c6f0b9eed4f57e5cb0447f9e883</originalsourceid><addsrcrecordid>eNp9UE1LxDAULKLguvoDvAU8d03SdNviyV38ggUvCt5Cmry4WdJkTVplb_4H_6G_xCz14El48N6DmWFmsuyc4BnBZH65mYltN6OYNDPM0jQH2QQXuMobzF4O_9zH2UmMG4xxmb5J9rEAp4x7RcIJu4smIq8RWBF7I4W1OyS9cyB7UOhmsBC-P78WEJwfrDVI-aG1kLcgOhR3sYcODXEv1q8BKRMSD7V-cEqEXRKFDlyPOujXXp1mR1rYCGe_e5o93948Le_z1ePdw_J6lctiXve5olRSApKwfTQsKLSMVnVVlK0WdatZUeumkXON2wZAMV1WUMoWM1bpBuq6mGYXo-42-LcBYs83fggpa-SUljUpkgJNKDKiZPAxBtB8G0yXXHOC-b5fvuGpX743wTFL0yTO1ciBZP_dQOBRGnASxuBcefMP-wcEpoaq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258134382</pqid></control><display><type>article</type><title>Bending analysis of elastically connected Euler–Bernoulli double-beam system using the direct boundary element method</title><source>Education Source (EBSCOhost)</source><source>Elsevier ScienceDirect Journals Complete</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Business Source Complete</source><creator>Brito, W.K.F. ; Maia, C.D.C.D. ; Mendonca, A.V.</creator><creatorcontrib>Brito, W.K.F. ; Maia, C.D.C.D. ; Mendonca, A.V.</creatorcontrib><description>•A direct BEM solution is established for static analysis of Euler–Bernoulli double-beam system.•Fundamental solutions, integral and algebraic equations are established.•Influence matrices and load vectors are explicitly shown.•Results confirm the effectiveness and correctness of this proposed BEM formulation. Double and multiple-Beam System (BS) models are structural models that idealize a system of beams interconnected by elastic layers, where beam theories are assumed to govern the beams and elastic foundation models are assumed to represent the elastic layers. Many engineering problems have been studied using BS models such as double and multiple pipeline systems, sandwich beams, adhesively bonded joints, continuous dynamic vibration absorbers, and floating-slab tracks. This paper presents for the first time a direct Boundary Element Method (BEM) formulation for bending of Euler–Bernoulli double-beam system connected by a Pasternak elastic layer. All of the mathematical steps required to establish the direct BEM solution are addressed. Discussions deriving explicit solutions for double-beam fundamental problem are presented. Integral and algebraic equations are derived where influence matrices and load vectors of double-beam systems are explicitly shown. Finally, numerical results are presented for differing cases involving static loads and boundary conditions.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2019.04.049</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Adhesive bonding ; Adhesive joints ; Beams (structural) ; BEM ; Bending ; Bonded joints ; Boundary conditions ; Boundary element method ; Connected beam system ; Elastic foundations ; Elastic layers ; Floating structures ; Fundamental solutions ; Integral equations ; Matrix algebra ; Matrix methods ; Nonlinear programming ; Sandwich structures ; Static loads ; Vectors (mathematics)</subject><ispartof>Applied Mathematical Modelling, 2019-10, Vol.74, p.387-408</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier BV Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d22c21ec1420190a2eb4278735bfa8bf438f99c6f0b9eed4f57e5cb0447f9e883</citedby><cites>FETCH-LOGICAL-c368t-d22c21ec1420190a2eb4278735bfa8bf438f99c6f0b9eed4f57e5cb0447f9e883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2019.04.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Brito, W.K.F.</creatorcontrib><creatorcontrib>Maia, C.D.C.D.</creatorcontrib><creatorcontrib>Mendonca, A.V.</creatorcontrib><title>Bending analysis of elastically connected Euler–Bernoulli double-beam system using the direct boundary element method</title><title>Applied Mathematical Modelling</title><description>•A direct BEM solution is established for static analysis of Euler–Bernoulli double-beam system.•Fundamental solutions, integral and algebraic equations are established.•Influence matrices and load vectors are explicitly shown.•Results confirm the effectiveness and correctness of this proposed BEM formulation. Double and multiple-Beam System (BS) models are structural models that idealize a system of beams interconnected by elastic layers, where beam theories are assumed to govern the beams and elastic foundation models are assumed to represent the elastic layers. Many engineering problems have been studied using BS models such as double and multiple pipeline systems, sandwich beams, adhesively bonded joints, continuous dynamic vibration absorbers, and floating-slab tracks. This paper presents for the first time a direct Boundary Element Method (BEM) formulation for bending of Euler–Bernoulli double-beam system connected by a Pasternak elastic layer. All of the mathematical steps required to establish the direct BEM solution are addressed. Discussions deriving explicit solutions for double-beam fundamental problem are presented. Integral and algebraic equations are derived where influence matrices and load vectors of double-beam systems are explicitly shown. Finally, numerical results are presented for differing cases involving static loads and boundary conditions.</description><subject>Adhesive bonding</subject><subject>Adhesive joints</subject><subject>Beams (structural)</subject><subject>BEM</subject><subject>Bending</subject><subject>Bonded joints</subject><subject>Boundary conditions</subject><subject>Boundary element method</subject><subject>Connected beam system</subject><subject>Elastic foundations</subject><subject>Elastic layers</subject><subject>Floating structures</subject><subject>Fundamental solutions</subject><subject>Integral equations</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Nonlinear programming</subject><subject>Sandwich structures</subject><subject>Static loads</subject><subject>Vectors (mathematics)</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAULKLguvoDvAU8d03SdNviyV38ggUvCt5Cmry4WdJkTVplb_4H_6G_xCz14El48N6DmWFmsuyc4BnBZH65mYltN6OYNDPM0jQH2QQXuMobzF4O_9zH2UmMG4xxmb5J9rEAp4x7RcIJu4smIq8RWBF7I4W1OyS9cyB7UOhmsBC-P78WEJwfrDVI-aG1kLcgOhR3sYcODXEv1q8BKRMSD7V-cEqEXRKFDlyPOujXXp1mR1rYCGe_e5o93948Le_z1ePdw_J6lctiXve5olRSApKwfTQsKLSMVnVVlK0WdatZUeumkXON2wZAMV1WUMoWM1bpBuq6mGYXo-42-LcBYs83fggpa-SUljUpkgJNKDKiZPAxBtB8G0yXXHOC-b5fvuGpX743wTFL0yTO1ciBZP_dQOBRGnASxuBcefMP-wcEpoaq</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Brito, W.K.F.</creator><creator>Maia, C.D.C.D.</creator><creator>Mendonca, A.V.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201910</creationdate><title>Bending analysis of elastically connected Euler–Bernoulli double-beam system using the direct boundary element method</title><author>Brito, W.K.F. ; Maia, C.D.C.D. ; Mendonca, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d22c21ec1420190a2eb4278735bfa8bf438f99c6f0b9eed4f57e5cb0447f9e883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adhesive bonding</topic><topic>Adhesive joints</topic><topic>Beams (structural)</topic><topic>BEM</topic><topic>Bending</topic><topic>Bonded joints</topic><topic>Boundary conditions</topic><topic>Boundary element method</topic><topic>Connected beam system</topic><topic>Elastic foundations</topic><topic>Elastic layers</topic><topic>Floating structures</topic><topic>Fundamental solutions</topic><topic>Integral equations</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Nonlinear programming</topic><topic>Sandwich structures</topic><topic>Static loads</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brito, W.K.F.</creatorcontrib><creatorcontrib>Maia, C.D.C.D.</creatorcontrib><creatorcontrib>Mendonca, A.V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brito, W.K.F.</au><au>Maia, C.D.C.D.</au><au>Mendonca, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bending analysis of elastically connected Euler–Bernoulli double-beam system using the direct boundary element method</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2019-10</date><risdate>2019</risdate><volume>74</volume><spage>387</spage><epage>408</epage><pages>387-408</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•A direct BEM solution is established for static analysis of Euler–Bernoulli double-beam system.•Fundamental solutions, integral and algebraic equations are established.•Influence matrices and load vectors are explicitly shown.•Results confirm the effectiveness and correctness of this proposed BEM formulation. Double and multiple-Beam System (BS) models are structural models that idealize a system of beams interconnected by elastic layers, where beam theories are assumed to govern the beams and elastic foundation models are assumed to represent the elastic layers. Many engineering problems have been studied using BS models such as double and multiple pipeline systems, sandwich beams, adhesively bonded joints, continuous dynamic vibration absorbers, and floating-slab tracks. This paper presents for the first time a direct Boundary Element Method (BEM) formulation for bending of Euler–Bernoulli double-beam system connected by a Pasternak elastic layer. All of the mathematical steps required to establish the direct BEM solution are addressed. Discussions deriving explicit solutions for double-beam fundamental problem are presented. Integral and algebraic equations are derived where influence matrices and load vectors of double-beam systems are explicitly shown. Finally, numerical results are presented for differing cases involving static loads and boundary conditions.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2019.04.049</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2019-10, Vol.74, p.387-408
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_2258134382
source Education Source (EBSCOhost); Elsevier ScienceDirect Journals Complete; Free E-Journal (出版社公開部分のみ); Business Source Complete
subjects Adhesive bonding
Adhesive joints
Beams (structural)
BEM
Bending
Bonded joints
Boundary conditions
Boundary element method
Connected beam system
Elastic foundations
Elastic layers
Floating structures
Fundamental solutions
Integral equations
Matrix algebra
Matrix methods
Nonlinear programming
Sandwich structures
Static loads
Vectors (mathematics)
title Bending analysis of elastically connected Euler–Bernoulli double-beam system using the direct boundary element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bending%20analysis%20of%20elastically%20connected%20Euler%E2%80%93Bernoulli%20double-beam%20system%20using%20the%20direct%20boundary%20element%20method&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Brito,%20W.K.F.&rft.date=2019-10&rft.volume=74&rft.spage=387&rft.epage=408&rft.pages=387-408&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2019.04.049&rft_dat=%3Cproquest_cross%3E2258134382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258134382&rft_id=info:pmid/&rft_els_id=S0307904X19302653&rfr_iscdi=true