A framework to reduce category proliferation in fuzzy ARTMAP classifiers adopted for image retrieval using differential evolution algorithm

Image classifiers are largely adopted to categorize a pool of images or patterns in a databank, match category of a query image and to retrieve similar images to query from the category. Fuzzy ARTMAP (FAM) architecture have been widely included for pattern classification in various applications. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2020-02, Vol.79 (5-6), p.4217-4238
Hauptverfasser: Anitha, K., Naresh, K., Devi, D. Rukmani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4238
container_issue 5-6
container_start_page 4217
container_title Multimedia tools and applications
container_volume 79
creator Anitha, K.
Naresh, K.
Devi, D. Rukmani
description Image classifiers are largely adopted to categorize a pool of images or patterns in a databank, match category of a query image and to retrieve similar images to query from the category. Fuzzy ARTMAP (FAM) architecture have been widely included for pattern classification in various applications. The major constraint that limits the application of FAM network is category proliferation problem. That is the architecture has the tendency to increase the network size. The issue is because of noisy data, order of presenting training data and/or overlapping categories. In this paper, we propose a new methodology, DE-FAM to handle category proliferation problem by reducing the quantity of categories in the trained FAM architectures. The enhanced generalized performance, reduction in network size and influence of the proposed algorithm in computational cost is demonstrated by adopting the algorithm for image classification and retrieval. Furthermore the comparison of DE-FAM with other algorithms that address the category proliferation problem illustrate the advantages of DE-FAM.
doi_str_mv 10.1007/s11042-019-07887-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2257967106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2257967106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-883af47fd1bf37d9cafe5d274b0929d7af8e5d57c7f25acd8c5eab9f33d1ee63</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhgdRsFZfwFXA9WguTTOzLMUbVBTpPqTJSU2dTmqSUdpX8KVNO4I7V-fC_3-H8xfFJcHXBGNxEwnBI1piUpdYVJUo-VExIFywUghKjnPPKlwKjslpcRbjCmMy5nQ0KL4nyAa1hi8f3lHyKIDpNCCtEix92KJN8I2zEFRyvkWuRbbb7bZo8jp_mrwg3agYnXUQIlLGbxIYZH1Abq2WkFkpOPhUDeqia5fIOJtJ0CaXV_Dpm-4AVU2-5NLb-rw4saqJcPFbh8X87nY-fShnz_eP08ms1IzUqawqpuxIWEMWlglTa2WBGypGC1zT2ghlqzxzoYWlXGlTaQ5qUVvGDAEYs2Fx1WPzbx8dxCRXvgttvigp5aIeC4L3KtqrdPAxBrByE_JbYSsJlvvMZZ-5zJnLQ-aSZxPrTTGL2yWEP_Q_rh80FokS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257967106</pqid></control><display><type>article</type><title>A framework to reduce category proliferation in fuzzy ARTMAP classifiers adopted for image retrieval using differential evolution algorithm</title><source>Springer Nature - Complete Springer Journals</source><creator>Anitha, K. ; Naresh, K. ; Devi, D. Rukmani</creator><creatorcontrib>Anitha, K. ; Naresh, K. ; Devi, D. Rukmani</creatorcontrib><description>Image classifiers are largely adopted to categorize a pool of images or patterns in a databank, match category of a query image and to retrieve similar images to query from the category. Fuzzy ARTMAP (FAM) architecture have been widely included for pattern classification in various applications. The major constraint that limits the application of FAM network is category proliferation problem. That is the architecture has the tendency to increase the network size. The issue is because of noisy data, order of presenting training data and/or overlapping categories. In this paper, we propose a new methodology, DE-FAM to handle category proliferation problem by reducing the quantity of categories in the trained FAM architectures. The enhanced generalized performance, reduction in network size and influence of the proposed algorithm in computational cost is demonstrated by adopting the algorithm for image classification and retrieval. Furthermore the comparison of DE-FAM with other algorithms that address the category proliferation problem illustrate the advantages of DE-FAM.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-07887-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Architecture ; Classifiers ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Evolutionary algorithms ; Evolutionary computation ; Image classification ; Image management ; Image retrieval ; Multimedia Information Systems ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2020-02, Vol.79 (5-6), p.4217-4238</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-883af47fd1bf37d9cafe5d274b0929d7af8e5d57c7f25acd8c5eab9f33d1ee63</citedby><cites>FETCH-LOGICAL-c319t-883af47fd1bf37d9cafe5d274b0929d7af8e5d57c7f25acd8c5eab9f33d1ee63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-019-07887-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-019-07887-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Anitha, K.</creatorcontrib><creatorcontrib>Naresh, K.</creatorcontrib><creatorcontrib>Devi, D. Rukmani</creatorcontrib><title>A framework to reduce category proliferation in fuzzy ARTMAP classifiers adopted for image retrieval using differential evolution algorithm</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Image classifiers are largely adopted to categorize a pool of images or patterns in a databank, match category of a query image and to retrieve similar images to query from the category. Fuzzy ARTMAP (FAM) architecture have been widely included for pattern classification in various applications. The major constraint that limits the application of FAM network is category proliferation problem. That is the architecture has the tendency to increase the network size. The issue is because of noisy data, order of presenting training data and/or overlapping categories. In this paper, we propose a new methodology, DE-FAM to handle category proliferation problem by reducing the quantity of categories in the trained FAM architectures. The enhanced generalized performance, reduction in network size and influence of the proposed algorithm in computational cost is demonstrated by adopting the algorithm for image classification and retrieval. Furthermore the comparison of DE-FAM with other algorithms that address the category proliferation problem illustrate the advantages of DE-FAM.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Classifiers</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Image classification</subject><subject>Image management</subject><subject>Image retrieval</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKAzEUhgdRsFZfwFXA9WguTTOzLMUbVBTpPqTJSU2dTmqSUdpX8KVNO4I7V-fC_3-H8xfFJcHXBGNxEwnBI1piUpdYVJUo-VExIFywUghKjnPPKlwKjslpcRbjCmMy5nQ0KL4nyAa1hi8f3lHyKIDpNCCtEix92KJN8I2zEFRyvkWuRbbb7bZo8jp_mrwg3agYnXUQIlLGbxIYZH1Abq2WkFkpOPhUDeqia5fIOJtJ0CaXV_Dpm-4AVU2-5NLb-rw4saqJcPFbh8X87nY-fShnz_eP08ms1IzUqawqpuxIWEMWlglTa2WBGypGC1zT2ghlqzxzoYWlXGlTaQ5qUVvGDAEYs2Fx1WPzbx8dxCRXvgttvigp5aIeC4L3KtqrdPAxBrByE_JbYSsJlvvMZZ-5zJnLQ-aSZxPrTTGL2yWEP_Q_rh80FokS</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Anitha, K.</creator><creator>Naresh, K.</creator><creator>Devi, D. Rukmani</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20200201</creationdate><title>A framework to reduce category proliferation in fuzzy ARTMAP classifiers adopted for image retrieval using differential evolution algorithm</title><author>Anitha, K. ; Naresh, K. ; Devi, D. Rukmani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-883af47fd1bf37d9cafe5d274b0929d7af8e5d57c7f25acd8c5eab9f33d1ee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Classifiers</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Image classification</topic><topic>Image management</topic><topic>Image retrieval</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anitha, K.</creatorcontrib><creatorcontrib>Naresh, K.</creatorcontrib><creatorcontrib>Devi, D. Rukmani</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anitha, K.</au><au>Naresh, K.</au><au>Devi, D. Rukmani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A framework to reduce category proliferation in fuzzy ARTMAP classifiers adopted for image retrieval using differential evolution algorithm</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>79</volume><issue>5-6</issue><spage>4217</spage><epage>4238</epage><pages>4217-4238</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Image classifiers are largely adopted to categorize a pool of images or patterns in a databank, match category of a query image and to retrieve similar images to query from the category. Fuzzy ARTMAP (FAM) architecture have been widely included for pattern classification in various applications. The major constraint that limits the application of FAM network is category proliferation problem. That is the architecture has the tendency to increase the network size. The issue is because of noisy data, order of presenting training data and/or overlapping categories. In this paper, we propose a new methodology, DE-FAM to handle category proliferation problem by reducing the quantity of categories in the trained FAM architectures. The enhanced generalized performance, reduction in network size and influence of the proposed algorithm in computational cost is demonstrated by adopting the algorithm for image classification and retrieval. Furthermore the comparison of DE-FAM with other algorithms that address the category proliferation problem illustrate the advantages of DE-FAM.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-019-07887-5</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2020-02, Vol.79 (5-6), p.4217-4238
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2257967106
source Springer Nature - Complete Springer Journals
subjects Algorithms
Architecture
Classifiers
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Evolutionary algorithms
Evolutionary computation
Image classification
Image management
Image retrieval
Multimedia Information Systems
Special Purpose and Application-Based Systems
title A framework to reduce category proliferation in fuzzy ARTMAP classifiers adopted for image retrieval using differential evolution algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20framework%20to%20reduce%20category%20proliferation%20in%20fuzzy%20ARTMAP%20classifiers%20adopted%20for%20image%20retrieval%20using%20differential%20evolution%20algorithm&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Anitha,%20K.&rft.date=2020-02-01&rft.volume=79&rft.issue=5-6&rft.spage=4217&rft.epage=4238&rft.pages=4217-4238&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-07887-5&rft_dat=%3Cproquest_cross%3E2257967106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257967106&rft_id=info:pmid/&rfr_iscdi=true