Improved sliding mode observer-based SOC estimation for lithium battery

In this paper, lithium battery state of charge (SOC) is estimated by using sliding mode observer and H∞ filter. Firstly, through the discharge experiment, parameters of the second-order RC equivalent circuit model of battery are identified. Secondly, by combining sliding mode observer method and H∞...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang, Hongfei, Fu, Zhumu, Tao, Fazhan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2122
creator Zhang, Hongfei
Fu, Zhumu
Tao, Fazhan
description In this paper, lithium battery state of charge (SOC) is estimated by using sliding mode observer and H∞ filter. Firstly, through the discharge experiment, parameters of the second-order RC equivalent circuit model of battery are identified. Secondly, by combining sliding mode observer method and H∞ filtering algorithm, the SOC estimation error covariance matrix in real time is updated for adjusting the observation gain matrix. An improved sliding mode observer is designed to estimate the battery’s SOC. Simulation results show that the designed control algorithm has higher estimation accuracy, and the estimation error is lower than 5%, which is 2% higher than H∞ filtering algorithm and 7% higher than that of sliding mode observer.
doi_str_mv 10.1063/1.5116497
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2257924684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2257924684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6be58974b1e72f815cf73de9d2f4dc192a47f37657633d9010bb16ffc636d2673</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAm7CayefmKEVrodCDCt7CZpNoSrdbk7TQf-9qC948zWGed-bhRegayB0Qye7hTgBIrtUJGoEQUCkJ8hSNCNG8opy9n6OLnJeEUK1UPULTWbdJ_c47nFfRxfUH7nrncW-zTzufKtvkYfeymGCfS-yaEvs1Dn3Cq1g-47bDtinFp_0lOgvNKvur4xyjt6fH18lzNV9MZ5OHedVSzUolrRe1VtyCVzTUINqgmPPa0cBdC5o2XAWmpFCSMacJEGtBhtBKJh2Vio3RzeHuYP21HZzMst-m9fDSUCqUplzWfKBuD1RuY_l1Nps02Ke92fXJgDmWZDYu_AcDMT-t_gXYN--faKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2257924684</pqid></control><display><type>conference_proceeding</type><title>Improved sliding mode observer-based SOC estimation for lithium battery</title><source>AIP Journals Complete</source><creator>Zhang, Hongfei ; Fu, Zhumu ; Tao, Fazhan</creator><contributor>Liu, Lin ; Zhou, Jun Xiao Yang</contributor><creatorcontrib>Zhang, Hongfei ; Fu, Zhumu ; Tao, Fazhan ; Liu, Lin ; Zhou, Jun Xiao Yang</creatorcontrib><description>In this paper, lithium battery state of charge (SOC) is estimated by using sliding mode observer and H∞ filter. Firstly, through the discharge experiment, parameters of the second-order RC equivalent circuit model of battery are identified. Secondly, by combining sliding mode observer method and H∞ filtering algorithm, the SOC estimation error covariance matrix in real time is updated for adjusting the observation gain matrix. An improved sliding mode observer is designed to estimate the battery’s SOC. Simulation results show that the designed control algorithm has higher estimation accuracy, and the estimation error is lower than 5%, which is 2% higher than H∞ filtering algorithm and 7% higher than that of sliding mode observer.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5116497</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Batteries ; Computer simulation ; Control algorithms ; Control theory ; Covariance matrix ; Equivalent circuits ; Filtration ; H-infinity control ; Lithium ; Lithium batteries ; Order parameters ; Parameter identification ; Sliding mode control ; State of charge</subject><ispartof>AIP Conference Proceedings, 2019, Vol.2122 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6be58974b1e72f815cf73de9d2f4dc192a47f37657633d9010bb16ffc636d2673</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5116497$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Liu, Lin</contributor><contributor>Zhou, Jun Xiao Yang</contributor><creatorcontrib>Zhang, Hongfei</creatorcontrib><creatorcontrib>Fu, Zhumu</creatorcontrib><creatorcontrib>Tao, Fazhan</creatorcontrib><title>Improved sliding mode observer-based SOC estimation for lithium battery</title><title>AIP Conference Proceedings</title><description>In this paper, lithium battery state of charge (SOC) is estimated by using sliding mode observer and H∞ filter. Firstly, through the discharge experiment, parameters of the second-order RC equivalent circuit model of battery are identified. Secondly, by combining sliding mode observer method and H∞ filtering algorithm, the SOC estimation error covariance matrix in real time is updated for adjusting the observation gain matrix. An improved sliding mode observer is designed to estimate the battery’s SOC. Simulation results show that the designed control algorithm has higher estimation accuracy, and the estimation error is lower than 5%, which is 2% higher than H∞ filtering algorithm and 7% higher than that of sliding mode observer.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Covariance matrix</subject><subject>Equivalent circuits</subject><subject>Filtration</subject><subject>H-infinity control</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Order parameters</subject><subject>Parameter identification</subject><subject>Sliding mode control</subject><subject>State of charge</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAm7CayefmKEVrodCDCt7CZpNoSrdbk7TQf-9qC948zWGed-bhRegayB0Qye7hTgBIrtUJGoEQUCkJ8hSNCNG8opy9n6OLnJeEUK1UPULTWbdJ_c47nFfRxfUH7nrncW-zTzufKtvkYfeymGCfS-yaEvs1Dn3Cq1g-47bDtinFp_0lOgvNKvur4xyjt6fH18lzNV9MZ5OHedVSzUolrRe1VtyCVzTUINqgmPPa0cBdC5o2XAWmpFCSMacJEGtBhtBKJh2Vio3RzeHuYP21HZzMst-m9fDSUCqUplzWfKBuD1RuY_l1Nps02Ke92fXJgDmWZDYu_AcDMT-t_gXYN--faKI</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Zhang, Hongfei</creator><creator>Fu, Zhumu</creator><creator>Tao, Fazhan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190715</creationdate><title>Improved sliding mode observer-based SOC estimation for lithium battery</title><author>Zhang, Hongfei ; Fu, Zhumu ; Tao, Fazhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6be58974b1e72f815cf73de9d2f4dc192a47f37657633d9010bb16ffc636d2673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Covariance matrix</topic><topic>Equivalent circuits</topic><topic>Filtration</topic><topic>H-infinity control</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Order parameters</topic><topic>Parameter identification</topic><topic>Sliding mode control</topic><topic>State of charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongfei</creatorcontrib><creatorcontrib>Fu, Zhumu</creatorcontrib><creatorcontrib>Tao, Fazhan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongfei</au><au>Fu, Zhumu</au><au>Tao, Fazhan</au><au>Liu, Lin</au><au>Zhou, Jun Xiao Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved sliding mode observer-based SOC estimation for lithium battery</atitle><btitle>AIP Conference Proceedings</btitle><date>2019-07-15</date><risdate>2019</risdate><volume>2122</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, lithium battery state of charge (SOC) is estimated by using sliding mode observer and H∞ filter. Firstly, through the discharge experiment, parameters of the second-order RC equivalent circuit model of battery are identified. Secondly, by combining sliding mode observer method and H∞ filtering algorithm, the SOC estimation error covariance matrix in real time is updated for adjusting the observation gain matrix. An improved sliding mode observer is designed to estimate the battery’s SOC. Simulation results show that the designed control algorithm has higher estimation accuracy, and the estimation error is lower than 5%, which is 2% higher than H∞ filtering algorithm and 7% higher than that of sliding mode observer.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5116497</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2019, Vol.2122 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2257924684
source AIP Journals Complete
subjects Algorithms
Batteries
Computer simulation
Control algorithms
Control theory
Covariance matrix
Equivalent circuits
Filtration
H-infinity control
Lithium
Lithium batteries
Order parameters
Parameter identification
Sliding mode control
State of charge
title Improved sliding mode observer-based SOC estimation for lithium battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20sliding%20mode%20observer-based%20SOC%20estimation%20for%20lithium%20battery&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Zhang,%20Hongfei&rft.date=2019-07-15&rft.volume=2122&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5116497&rft_dat=%3Cproquest_scita%3E2257924684%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257924684&rft_id=info:pmid/&rfr_iscdi=true