Colloidal stability of molten salt –based nanofluids: Dynamic Light Scattering tests at high temperature conditions

The use of molten salt-based nanofluids as heat transfer fluids or thermal energy storage materials to increase the efficiency of Concentrated Solar Power plants has gained attention due to the use of the renewable energies against Global Warming. One of the issues of interest is the colloidal stabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2019-06, Vol.352, p.1-10
Hauptverfasser: Navarrete, Nuria, Gimeno-Furió, Alexandra, Forner-Escrig, Josep, Juliá, J. Enrique, Mondragón, Rosa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Powder technology
container_volume 352
creator Navarrete, Nuria
Gimeno-Furió, Alexandra
Forner-Escrig, Josep
Juliá, J. Enrique
Mondragón, Rosa
description The use of molten salt-based nanofluids as heat transfer fluids or thermal energy storage materials to increase the efficiency of Concentrated Solar Power plants has gained attention due to the use of the renewable energies against Global Warming. One of the issues of interest is the colloidal stability of the nanoparticles dispersed in ionic media like molten salts. In this work a new experimental set-up to measure the particle size distribution of molten salt-based nanofluids by means of Dynamic Light Scattering was developed. The colloidal stability of silica and Al/Cu nanoparticles dispersed in solar salt (NaNO3-KNO3) was experimentally measured for the first time. Silica nanoparticles were dispersed in water, calcium nitrate tetrahydrate and solar salt, and the formation of micrometrical agglomerates was observed when molten salts were used as base fluid due to the high ionic strength of the medium and the reduced Debye length. The influence of the nanoparticle composition was proved to be also important. For the Al/Cu metal alloy nanoparticles the agglomerates formed were smaller than for silica. Besides, even though both nanoparticles settle after 4 h in static conditions, only Al/Cu nanoparticles recover the initial particle size distribution when they are mechanically redispersed. [Display omitted] •New experimental set-up to measure particle size distribution up to 500 °C•Measurement of particle size distribution of molten salt-based nanofluids•Determination of colloidal stability along time•Nanoparticles highly agglomerate in ionic media•Al/Cu nanoparticles recover the initial size when stirred after a static period.
doi_str_mv 10.1016/j.powtec.2019.04.045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2257680836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591019302931</els_id><sourcerecordid>2257680836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-6b363a10ac0147994bb937879ed529325a0eb51736e1a0f9369e99e2c62fe3e63</originalsourceid><addsrcrecordid>eNp9UMFq3DAQFaGFbLf5gxwEOXszkmzZyqFQtklbWMghCfQmZHm80eKVXElO2Fv-IX_YL6mX7bnwYBjmvTczj5BLBisGTF7vVmN4zWhXHJhaQTmjOiML1tSiELz59YEsAAQvKsXgnHxKaQcAUjBYkGkdhiG4zgw0ZdO6weUDDT3dhyGjp8kMmf55e29Nwo5640M_TK5LN_TbwZu9s3Tjts-ZPliTM0bntzRjyomaTJ_nydztR4wmTxGpDb5z2QWfPpOPvRkSXvyrS_J0d_u4_lFs7r__XH_dFLZkdS5kK6QwDIwFVtZKlW2rRN3UCruKK8ErA9hWrBYSmYFeCalQKeRW8h4FSrEkVyffMYbf03yY3oUp-nml5ryqZQONOLLKE8vGkFLEXo_R7U08aAb6GLDe6VPA-hiwhnJGNcu-nGQ4f_DiMOpkHXqLnYtos-6C-7_BXxbJiIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257680836</pqid></control><display><type>article</type><title>Colloidal stability of molten salt –based nanofluids: Dynamic Light Scattering tests at high temperature conditions</title><source>Elsevier ScienceDirect Journals</source><creator>Navarrete, Nuria ; Gimeno-Furió, Alexandra ; Forner-Escrig, Josep ; Juliá, J. Enrique ; Mondragón, Rosa</creator><creatorcontrib>Navarrete, Nuria ; Gimeno-Furió, Alexandra ; Forner-Escrig, Josep ; Juliá, J. Enrique ; Mondragón, Rosa</creatorcontrib><description>The use of molten salt-based nanofluids as heat transfer fluids or thermal energy storage materials to increase the efficiency of Concentrated Solar Power plants has gained attention due to the use of the renewable energies against Global Warming. One of the issues of interest is the colloidal stability of the nanoparticles dispersed in ionic media like molten salts. In this work a new experimental set-up to measure the particle size distribution of molten salt-based nanofluids by means of Dynamic Light Scattering was developed. The colloidal stability of silica and Al/Cu nanoparticles dispersed in solar salt (NaNO3-KNO3) was experimentally measured for the first time. Silica nanoparticles were dispersed in water, calcium nitrate tetrahydrate and solar salt, and the formation of micrometrical agglomerates was observed when molten salts were used as base fluid due to the high ionic strength of the medium and the reduced Debye length. The influence of the nanoparticle composition was proved to be also important. For the Al/Cu metal alloy nanoparticles the agglomerates formed were smaller than for silica. Besides, even though both nanoparticles settle after 4 h in static conditions, only Al/Cu nanoparticles recover the initial particle size distribution when they are mechanically redispersed. [Display omitted] •New experimental set-up to measure particle size distribution up to 500 °C•Measurement of particle size distribution of molten salt-based nanofluids•Determination of colloidal stability along time•Nanoparticles highly agglomerate in ionic media•Al/Cu nanoparticles recover the initial size when stirred after a static period.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2019.04.045</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Agglomerates ; Calcium ; Calcium nitrate ; Climate change ; Colloidal stability ; Colloids ; Copper ; Debye length ; Dynamic Light Scattering ; Dynamic stability ; Energy storage ; Global warming ; Heat transfer ; High temperature ; Ionic strength ; Ions ; Light scattering ; Molten salts ; Nanoalloys ; Nanofluids ; Nanoparticles ; Particle size ; Particle size distribution ; Photon correlation spectroscopy ; Power efficiency ; Power plants ; Salts ; Scattering ; Silica ; Silicon dioxide ; Size distribution ; Solar power ; Thermal energy</subject><ispartof>Powder technology, 2019-06, Vol.352, p.1-10</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-6b363a10ac0147994bb937879ed529325a0eb51736e1a0f9369e99e2c62fe3e63</citedby><cites>FETCH-LOGICAL-c417t-6b363a10ac0147994bb937879ed529325a0eb51736e1a0f9369e99e2c62fe3e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0032591019302931$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Navarrete, Nuria</creatorcontrib><creatorcontrib>Gimeno-Furió, Alexandra</creatorcontrib><creatorcontrib>Forner-Escrig, Josep</creatorcontrib><creatorcontrib>Juliá, J. Enrique</creatorcontrib><creatorcontrib>Mondragón, Rosa</creatorcontrib><title>Colloidal stability of molten salt –based nanofluids: Dynamic Light Scattering tests at high temperature conditions</title><title>Powder technology</title><description>The use of molten salt-based nanofluids as heat transfer fluids or thermal energy storage materials to increase the efficiency of Concentrated Solar Power plants has gained attention due to the use of the renewable energies against Global Warming. One of the issues of interest is the colloidal stability of the nanoparticles dispersed in ionic media like molten salts. In this work a new experimental set-up to measure the particle size distribution of molten salt-based nanofluids by means of Dynamic Light Scattering was developed. The colloidal stability of silica and Al/Cu nanoparticles dispersed in solar salt (NaNO3-KNO3) was experimentally measured for the first time. Silica nanoparticles were dispersed in water, calcium nitrate tetrahydrate and solar salt, and the formation of micrometrical agglomerates was observed when molten salts were used as base fluid due to the high ionic strength of the medium and the reduced Debye length. The influence of the nanoparticle composition was proved to be also important. For the Al/Cu metal alloy nanoparticles the agglomerates formed were smaller than for silica. Besides, even though both nanoparticles settle after 4 h in static conditions, only Al/Cu nanoparticles recover the initial particle size distribution when they are mechanically redispersed. [Display omitted] •New experimental set-up to measure particle size distribution up to 500 °C•Measurement of particle size distribution of molten salt-based nanofluids•Determination of colloidal stability along time•Nanoparticles highly agglomerate in ionic media•Al/Cu nanoparticles recover the initial size when stirred after a static period.</description><subject>Agglomerates</subject><subject>Calcium</subject><subject>Calcium nitrate</subject><subject>Climate change</subject><subject>Colloidal stability</subject><subject>Colloids</subject><subject>Copper</subject><subject>Debye length</subject><subject>Dynamic Light Scattering</subject><subject>Dynamic stability</subject><subject>Energy storage</subject><subject>Global warming</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Ionic strength</subject><subject>Ions</subject><subject>Light scattering</subject><subject>Molten salts</subject><subject>Nanoalloys</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Photon correlation spectroscopy</subject><subject>Power efficiency</subject><subject>Power plants</subject><subject>Salts</subject><subject>Scattering</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Size distribution</subject><subject>Solar power</subject><subject>Thermal energy</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMFq3DAQFaGFbLf5gxwEOXszkmzZyqFQtklbWMghCfQmZHm80eKVXElO2Fv-IX_YL6mX7bnwYBjmvTczj5BLBisGTF7vVmN4zWhXHJhaQTmjOiML1tSiELz59YEsAAQvKsXgnHxKaQcAUjBYkGkdhiG4zgw0ZdO6weUDDT3dhyGjp8kMmf55e29Nwo5640M_TK5LN_TbwZu9s3Tjts-ZPliTM0bntzRjyomaTJ_nydztR4wmTxGpDb5z2QWfPpOPvRkSXvyrS_J0d_u4_lFs7r__XH_dFLZkdS5kK6QwDIwFVtZKlW2rRN3UCruKK8ErA9hWrBYSmYFeCalQKeRW8h4FSrEkVyffMYbf03yY3oUp-nml5ryqZQONOLLKE8vGkFLEXo_R7U08aAb6GLDe6VPA-hiwhnJGNcu-nGQ4f_DiMOpkHXqLnYtos-6C-7_BXxbJiIM</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Navarrete, Nuria</creator><creator>Gimeno-Furió, Alexandra</creator><creator>Forner-Escrig, Josep</creator><creator>Juliá, J. Enrique</creator><creator>Mondragón, Rosa</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope></search><sort><creationdate>20190615</creationdate><title>Colloidal stability of molten salt –based nanofluids: Dynamic Light Scattering tests at high temperature conditions</title><author>Navarrete, Nuria ; Gimeno-Furió, Alexandra ; Forner-Escrig, Josep ; Juliá, J. Enrique ; Mondragón, Rosa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-6b363a10ac0147994bb937879ed529325a0eb51736e1a0f9369e99e2c62fe3e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agglomerates</topic><topic>Calcium</topic><topic>Calcium nitrate</topic><topic>Climate change</topic><topic>Colloidal stability</topic><topic>Colloids</topic><topic>Copper</topic><topic>Debye length</topic><topic>Dynamic Light Scattering</topic><topic>Dynamic stability</topic><topic>Energy storage</topic><topic>Global warming</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Ionic strength</topic><topic>Ions</topic><topic>Light scattering</topic><topic>Molten salts</topic><topic>Nanoalloys</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Photon correlation spectroscopy</topic><topic>Power efficiency</topic><topic>Power plants</topic><topic>Salts</topic><topic>Scattering</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Size distribution</topic><topic>Solar power</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navarrete, Nuria</creatorcontrib><creatorcontrib>Gimeno-Furió, Alexandra</creatorcontrib><creatorcontrib>Forner-Escrig, Josep</creatorcontrib><creatorcontrib>Juliá, J. Enrique</creatorcontrib><creatorcontrib>Mondragón, Rosa</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navarrete, Nuria</au><au>Gimeno-Furió, Alexandra</au><au>Forner-Escrig, Josep</au><au>Juliá, J. Enrique</au><au>Mondragón, Rosa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal stability of molten salt –based nanofluids: Dynamic Light Scattering tests at high temperature conditions</atitle><jtitle>Powder technology</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>352</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>The use of molten salt-based nanofluids as heat transfer fluids or thermal energy storage materials to increase the efficiency of Concentrated Solar Power plants has gained attention due to the use of the renewable energies against Global Warming. One of the issues of interest is the colloidal stability of the nanoparticles dispersed in ionic media like molten salts. In this work a new experimental set-up to measure the particle size distribution of molten salt-based nanofluids by means of Dynamic Light Scattering was developed. The colloidal stability of silica and Al/Cu nanoparticles dispersed in solar salt (NaNO3-KNO3) was experimentally measured for the first time. Silica nanoparticles were dispersed in water, calcium nitrate tetrahydrate and solar salt, and the formation of micrometrical agglomerates was observed when molten salts were used as base fluid due to the high ionic strength of the medium and the reduced Debye length. The influence of the nanoparticle composition was proved to be also important. For the Al/Cu metal alloy nanoparticles the agglomerates formed were smaller than for silica. Besides, even though both nanoparticles settle after 4 h in static conditions, only Al/Cu nanoparticles recover the initial particle size distribution when they are mechanically redispersed. [Display omitted] •New experimental set-up to measure particle size distribution up to 500 °C•Measurement of particle size distribution of molten salt-based nanofluids•Determination of colloidal stability along time•Nanoparticles highly agglomerate in ionic media•Al/Cu nanoparticles recover the initial size when stirred after a static period.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2019.04.045</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2019-06, Vol.352, p.1-10
issn 0032-5910
1873-328X
language eng
recordid cdi_proquest_journals_2257680836
source Elsevier ScienceDirect Journals
subjects Agglomerates
Calcium
Calcium nitrate
Climate change
Colloidal stability
Colloids
Copper
Debye length
Dynamic Light Scattering
Dynamic stability
Energy storage
Global warming
Heat transfer
High temperature
Ionic strength
Ions
Light scattering
Molten salts
Nanoalloys
Nanofluids
Nanoparticles
Particle size
Particle size distribution
Photon correlation spectroscopy
Power efficiency
Power plants
Salts
Scattering
Silica
Silicon dioxide
Size distribution
Solar power
Thermal energy
title Colloidal stability of molten salt –based nanofluids: Dynamic Light Scattering tests at high temperature conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A17%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20stability%20of%20molten%20salt%20%E2%80%93based%20nanofluids:%20Dynamic%20Light%20Scattering%20tests%20at%20high%20temperature%20conditions&rft.jtitle=Powder%20technology&rft.au=Navarrete,%20Nuria&rft.date=2019-06-15&rft.volume=352&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2019.04.045&rft_dat=%3Cproquest_cross%3E2257680836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257680836&rft_id=info:pmid/&rft_els_id=S0032591019302931&rfr_iscdi=true