Colloidal stability of molten salt –based nanofluids: Dynamic Light Scattering tests at high temperature conditions
The use of molten salt-based nanofluids as heat transfer fluids or thermal energy storage materials to increase the efficiency of Concentrated Solar Power plants has gained attention due to the use of the renewable energies against Global Warming. One of the issues of interest is the colloidal stabi...
Gespeichert in:
Veröffentlicht in: | Powder technology 2019-06, Vol.352, p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Powder technology |
container_volume | 352 |
creator | Navarrete, Nuria Gimeno-Furió, Alexandra Forner-Escrig, Josep Juliá, J. Enrique Mondragón, Rosa |
description | The use of molten salt-based nanofluids as heat transfer fluids or thermal energy storage materials to increase the efficiency of Concentrated Solar Power plants has gained attention due to the use of the renewable energies against Global Warming. One of the issues of interest is the colloidal stability of the nanoparticles dispersed in ionic media like molten salts. In this work a new experimental set-up to measure the particle size distribution of molten salt-based nanofluids by means of Dynamic Light Scattering was developed. The colloidal stability of silica and Al/Cu nanoparticles dispersed in solar salt (NaNO3-KNO3) was experimentally measured for the first time. Silica nanoparticles were dispersed in water, calcium nitrate tetrahydrate and solar salt, and the formation of micrometrical agglomerates was observed when molten salts were used as base fluid due to the high ionic strength of the medium and the reduced Debye length. The influence of the nanoparticle composition was proved to be also important. For the Al/Cu metal alloy nanoparticles the agglomerates formed were smaller than for silica. Besides, even though both nanoparticles settle after 4 h in static conditions, only Al/Cu nanoparticles recover the initial particle size distribution when they are mechanically redispersed.
[Display omitted]
•New experimental set-up to measure particle size distribution up to 500 °C•Measurement of particle size distribution of molten salt-based nanofluids•Determination of colloidal stability along time•Nanoparticles highly agglomerate in ionic media•Al/Cu nanoparticles recover the initial size when stirred after a static period. |
doi_str_mv | 10.1016/j.powtec.2019.04.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2257680836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591019302931</els_id><sourcerecordid>2257680836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-6b363a10ac0147994bb937879ed529325a0eb51736e1a0f9369e99e2c62fe3e63</originalsourceid><addsrcrecordid>eNp9UMFq3DAQFaGFbLf5gxwEOXszkmzZyqFQtklbWMghCfQmZHm80eKVXElO2Fv-IX_YL6mX7bnwYBjmvTczj5BLBisGTF7vVmN4zWhXHJhaQTmjOiML1tSiELz59YEsAAQvKsXgnHxKaQcAUjBYkGkdhiG4zgw0ZdO6weUDDT3dhyGjp8kMmf55e29Nwo5640M_TK5LN_TbwZu9s3Tjts-ZPliTM0bntzRjyomaTJ_nydztR4wmTxGpDb5z2QWfPpOPvRkSXvyrS_J0d_u4_lFs7r__XH_dFLZkdS5kK6QwDIwFVtZKlW2rRN3UCruKK8ErA9hWrBYSmYFeCalQKeRW8h4FSrEkVyffMYbf03yY3oUp-nml5ryqZQONOLLKE8vGkFLEXo_R7U08aAb6GLDe6VPA-hiwhnJGNcu-nGQ4f_DiMOpkHXqLnYtos-6C-7_BXxbJiIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257680836</pqid></control><display><type>article</type><title>Colloidal stability of molten salt –based nanofluids: Dynamic Light Scattering tests at high temperature conditions</title><source>Elsevier ScienceDirect Journals</source><creator>Navarrete, Nuria ; Gimeno-Furió, Alexandra ; Forner-Escrig, Josep ; Juliá, J. Enrique ; Mondragón, Rosa</creator><creatorcontrib>Navarrete, Nuria ; Gimeno-Furió, Alexandra ; Forner-Escrig, Josep ; Juliá, J. Enrique ; Mondragón, Rosa</creatorcontrib><description>The use of molten salt-based nanofluids as heat transfer fluids or thermal energy storage materials to increase the efficiency of Concentrated Solar Power plants has gained attention due to the use of the renewable energies against Global Warming. One of the issues of interest is the colloidal stability of the nanoparticles dispersed in ionic media like molten salts. In this work a new experimental set-up to measure the particle size distribution of molten salt-based nanofluids by means of Dynamic Light Scattering was developed. The colloidal stability of silica and Al/Cu nanoparticles dispersed in solar salt (NaNO3-KNO3) was experimentally measured for the first time. Silica nanoparticles were dispersed in water, calcium nitrate tetrahydrate and solar salt, and the formation of micrometrical agglomerates was observed when molten salts were used as base fluid due to the high ionic strength of the medium and the reduced Debye length. The influence of the nanoparticle composition was proved to be also important. For the Al/Cu metal alloy nanoparticles the agglomerates formed were smaller than for silica. Besides, even though both nanoparticles settle after 4 h in static conditions, only Al/Cu nanoparticles recover the initial particle size distribution when they are mechanically redispersed.
[Display omitted]
•New experimental set-up to measure particle size distribution up to 500 °C•Measurement of particle size distribution of molten salt-based nanofluids•Determination of colloidal stability along time•Nanoparticles highly agglomerate in ionic media•Al/Cu nanoparticles recover the initial size when stirred after a static period.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2019.04.045</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Agglomerates ; Calcium ; Calcium nitrate ; Climate change ; Colloidal stability ; Colloids ; Copper ; Debye length ; Dynamic Light Scattering ; Dynamic stability ; Energy storage ; Global warming ; Heat transfer ; High temperature ; Ionic strength ; Ions ; Light scattering ; Molten salts ; Nanoalloys ; Nanofluids ; Nanoparticles ; Particle size ; Particle size distribution ; Photon correlation spectroscopy ; Power efficiency ; Power plants ; Salts ; Scattering ; Silica ; Silicon dioxide ; Size distribution ; Solar power ; Thermal energy</subject><ispartof>Powder technology, 2019-06, Vol.352, p.1-10</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-6b363a10ac0147994bb937879ed529325a0eb51736e1a0f9369e99e2c62fe3e63</citedby><cites>FETCH-LOGICAL-c417t-6b363a10ac0147994bb937879ed529325a0eb51736e1a0f9369e99e2c62fe3e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0032591019302931$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Navarrete, Nuria</creatorcontrib><creatorcontrib>Gimeno-Furió, Alexandra</creatorcontrib><creatorcontrib>Forner-Escrig, Josep</creatorcontrib><creatorcontrib>Juliá, J. Enrique</creatorcontrib><creatorcontrib>Mondragón, Rosa</creatorcontrib><title>Colloidal stability of molten salt –based nanofluids: Dynamic Light Scattering tests at high temperature conditions</title><title>Powder technology</title><description>The use of molten salt-based nanofluids as heat transfer fluids or thermal energy storage materials to increase the efficiency of Concentrated Solar Power plants has gained attention due to the use of the renewable energies against Global Warming. One of the issues of interest is the colloidal stability of the nanoparticles dispersed in ionic media like molten salts. In this work a new experimental set-up to measure the particle size distribution of molten salt-based nanofluids by means of Dynamic Light Scattering was developed. The colloidal stability of silica and Al/Cu nanoparticles dispersed in solar salt (NaNO3-KNO3) was experimentally measured for the first time. Silica nanoparticles were dispersed in water, calcium nitrate tetrahydrate and solar salt, and the formation of micrometrical agglomerates was observed when molten salts were used as base fluid due to the high ionic strength of the medium and the reduced Debye length. The influence of the nanoparticle composition was proved to be also important. For the Al/Cu metal alloy nanoparticles the agglomerates formed were smaller than for silica. Besides, even though both nanoparticles settle after 4 h in static conditions, only Al/Cu nanoparticles recover the initial particle size distribution when they are mechanically redispersed.
[Display omitted]
•New experimental set-up to measure particle size distribution up to 500 °C•Measurement of particle size distribution of molten salt-based nanofluids•Determination of colloidal stability along time•Nanoparticles highly agglomerate in ionic media•Al/Cu nanoparticles recover the initial size when stirred after a static period.</description><subject>Agglomerates</subject><subject>Calcium</subject><subject>Calcium nitrate</subject><subject>Climate change</subject><subject>Colloidal stability</subject><subject>Colloids</subject><subject>Copper</subject><subject>Debye length</subject><subject>Dynamic Light Scattering</subject><subject>Dynamic stability</subject><subject>Energy storage</subject><subject>Global warming</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Ionic strength</subject><subject>Ions</subject><subject>Light scattering</subject><subject>Molten salts</subject><subject>Nanoalloys</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Photon correlation spectroscopy</subject><subject>Power efficiency</subject><subject>Power plants</subject><subject>Salts</subject><subject>Scattering</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Size distribution</subject><subject>Solar power</subject><subject>Thermal energy</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMFq3DAQFaGFbLf5gxwEOXszkmzZyqFQtklbWMghCfQmZHm80eKVXElO2Fv-IX_YL6mX7bnwYBjmvTczj5BLBisGTF7vVmN4zWhXHJhaQTmjOiML1tSiELz59YEsAAQvKsXgnHxKaQcAUjBYkGkdhiG4zgw0ZdO6weUDDT3dhyGjp8kMmf55e29Nwo5640M_TK5LN_TbwZu9s3Tjts-ZPliTM0bntzRjyomaTJ_nydztR4wmTxGpDb5z2QWfPpOPvRkSXvyrS_J0d_u4_lFs7r__XH_dFLZkdS5kK6QwDIwFVtZKlW2rRN3UCruKK8ErA9hWrBYSmYFeCalQKeRW8h4FSrEkVyffMYbf03yY3oUp-nml5ryqZQONOLLKE8vGkFLEXo_R7U08aAb6GLDe6VPA-hiwhnJGNcu-nGQ4f_DiMOpkHXqLnYtos-6C-7_BXxbJiIM</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Navarrete, Nuria</creator><creator>Gimeno-Furió, Alexandra</creator><creator>Forner-Escrig, Josep</creator><creator>Juliá, J. Enrique</creator><creator>Mondragón, Rosa</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope></search><sort><creationdate>20190615</creationdate><title>Colloidal stability of molten salt –based nanofluids: Dynamic Light Scattering tests at high temperature conditions</title><author>Navarrete, Nuria ; Gimeno-Furió, Alexandra ; Forner-Escrig, Josep ; Juliá, J. Enrique ; Mondragón, Rosa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-6b363a10ac0147994bb937879ed529325a0eb51736e1a0f9369e99e2c62fe3e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agglomerates</topic><topic>Calcium</topic><topic>Calcium nitrate</topic><topic>Climate change</topic><topic>Colloidal stability</topic><topic>Colloids</topic><topic>Copper</topic><topic>Debye length</topic><topic>Dynamic Light Scattering</topic><topic>Dynamic stability</topic><topic>Energy storage</topic><topic>Global warming</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Ionic strength</topic><topic>Ions</topic><topic>Light scattering</topic><topic>Molten salts</topic><topic>Nanoalloys</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Photon correlation spectroscopy</topic><topic>Power efficiency</topic><topic>Power plants</topic><topic>Salts</topic><topic>Scattering</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Size distribution</topic><topic>Solar power</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navarrete, Nuria</creatorcontrib><creatorcontrib>Gimeno-Furió, Alexandra</creatorcontrib><creatorcontrib>Forner-Escrig, Josep</creatorcontrib><creatorcontrib>Juliá, J. Enrique</creatorcontrib><creatorcontrib>Mondragón, Rosa</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navarrete, Nuria</au><au>Gimeno-Furió, Alexandra</au><au>Forner-Escrig, Josep</au><au>Juliá, J. Enrique</au><au>Mondragón, Rosa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal stability of molten salt –based nanofluids: Dynamic Light Scattering tests at high temperature conditions</atitle><jtitle>Powder technology</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>352</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>The use of molten salt-based nanofluids as heat transfer fluids or thermal energy storage materials to increase the efficiency of Concentrated Solar Power plants has gained attention due to the use of the renewable energies against Global Warming. One of the issues of interest is the colloidal stability of the nanoparticles dispersed in ionic media like molten salts. In this work a new experimental set-up to measure the particle size distribution of molten salt-based nanofluids by means of Dynamic Light Scattering was developed. The colloidal stability of silica and Al/Cu nanoparticles dispersed in solar salt (NaNO3-KNO3) was experimentally measured for the first time. Silica nanoparticles were dispersed in water, calcium nitrate tetrahydrate and solar salt, and the formation of micrometrical agglomerates was observed when molten salts were used as base fluid due to the high ionic strength of the medium and the reduced Debye length. The influence of the nanoparticle composition was proved to be also important. For the Al/Cu metal alloy nanoparticles the agglomerates formed were smaller than for silica. Besides, even though both nanoparticles settle after 4 h in static conditions, only Al/Cu nanoparticles recover the initial particle size distribution when they are mechanically redispersed.
[Display omitted]
•New experimental set-up to measure particle size distribution up to 500 °C•Measurement of particle size distribution of molten salt-based nanofluids•Determination of colloidal stability along time•Nanoparticles highly agglomerate in ionic media•Al/Cu nanoparticles recover the initial size when stirred after a static period.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2019.04.045</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-5910 |
ispartof | Powder technology, 2019-06, Vol.352, p.1-10 |
issn | 0032-5910 1873-328X |
language | eng |
recordid | cdi_proquest_journals_2257680836 |
source | Elsevier ScienceDirect Journals |
subjects | Agglomerates Calcium Calcium nitrate Climate change Colloidal stability Colloids Copper Debye length Dynamic Light Scattering Dynamic stability Energy storage Global warming Heat transfer High temperature Ionic strength Ions Light scattering Molten salts Nanoalloys Nanofluids Nanoparticles Particle size Particle size distribution Photon correlation spectroscopy Power efficiency Power plants Salts Scattering Silica Silicon dioxide Size distribution Solar power Thermal energy |
title | Colloidal stability of molten salt –based nanofluids: Dynamic Light Scattering tests at high temperature conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A17%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20stability%20of%20molten%20salt%20%E2%80%93based%20nanofluids:%20Dynamic%20Light%20Scattering%20tests%20at%20high%20temperature%20conditions&rft.jtitle=Powder%20technology&rft.au=Navarrete,%20Nuria&rft.date=2019-06-15&rft.volume=352&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2019.04.045&rft_dat=%3Cproquest_cross%3E2257680836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257680836&rft_id=info:pmid/&rft_els_id=S0032591019302931&rfr_iscdi=true |