DEM simulation of planar sliding using a particulate interface model considering velocity-dependent friction
Planar sliding is a typical failure mode of landslides, in which an unstable rock block slides along a weak plane, resulting in a rapid movement. This study proposes a particulate interface model (PIM) that considers velocity-dependent friction behavior to simulate the planar sliding behavior of the...
Gespeichert in:
Veröffentlicht in: | Computers and geotechnics 2019-08, Vol.112, p.51-59 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | |
container_start_page | 51 |
container_title | Computers and geotechnics |
container_volume | 112 |
creator | Chiu, Chia-Chi Weng, Meng-Chia |
description | Planar sliding is a typical failure mode of landslides, in which an unstable rock block slides along a weak plane, resulting in a rapid movement. This study proposes a particulate interface model (PIM) that considers velocity-dependent friction behavior to simulate the planar sliding behavior of the particulate DEM. To validate the performance of the proposed model, the results of a DEM simulation of the planar sliding of a rigid block are compared with the analytical dynamic solution. The results reveal that the PIM simulation is consistent with the analytical dynamic solution with or without consideration of the velocity-dependent friction law. The ordinary contact model does not accurately reflect the theoretical dynamics owing to the high resistance. The smooth-joint model underestimated the shear resisting force of the interface and yielded excessively high velocity and displacement of the block. With respect to the deposition distribution, the different interface models yielded the various velocities before impact, and therefore various failure patterns of the block and appearances of the deposition. The block velocity significantly influences the number of cracks. The results of the analysis reveal that the PIM can capture the planar sliding and deposition behavior of particulate DEM. |
doi_str_mv | 10.1016/j.compgeo.2019.04.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2257680121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266352X19301041</els_id><sourcerecordid>2257680121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8384c55eacba7eac7eee930ec356d170edc7ecdc75f3b48e33c93e0a090cdeaf3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK7-CULAc2vS9PMksq4fsOJFwVvITqZLSpvUpLuw_70p693LGxh-7w3zCLnlLOWMl_ddCm4Yd-jSjPEmZXnKGD8jC15XIqlKIc7JgmVlmYgi-74kVyF0ESibulmQ_mn9ToMZ9r2ajLPUtXTslVWeht5oY3d0H2ZVdFR-MjBzSI2d0LcKkA5OY0_B2WA0-pk8YO_ATMdE44hWo51o6w3M6dfkolV9wJu_uSRfz-vP1Wuy-Xh5Wz1uEhCimpJa1DkUBSrYqipqhYiNYAiiKDWvGOq4gihFK7Z5jUJAI5Ap1jDQqFqxJHen3NG7nz2GSXZu7208KbOsqMqa8YxHqjhR4F0IHls5ejMof5ScyblY2cm_YuVcrGS5jL1F38PJh_GFg0EvAxi0gNp4hElqZ_5J-AU8S4fk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257680121</pqid></control><display><type>article</type><title>DEM simulation of planar sliding using a particulate interface model considering velocity-dependent friction</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chiu, Chia-Chi ; Weng, Meng-Chia</creator><creatorcontrib>Chiu, Chia-Chi ; Weng, Meng-Chia</creatorcontrib><description>Planar sliding is a typical failure mode of landslides, in which an unstable rock block slides along a weak plane, resulting in a rapid movement. This study proposes a particulate interface model (PIM) that considers velocity-dependent friction behavior to simulate the planar sliding behavior of the particulate DEM. To validate the performance of the proposed model, the results of a DEM simulation of the planar sliding of a rigid block are compared with the analytical dynamic solution. The results reveal that the PIM simulation is consistent with the analytical dynamic solution with or without consideration of the velocity-dependent friction law. The ordinary contact model does not accurately reflect the theoretical dynamics owing to the high resistance. The smooth-joint model underestimated the shear resisting force of the interface and yielded excessively high velocity and displacement of the block. With respect to the deposition distribution, the different interface models yielded the various velocities before impact, and therefore various failure patterns of the block and appearances of the deposition. The block velocity significantly influences the number of cracks. The results of the analysis reveal that the PIM can capture the planar sliding and deposition behavior of particulate DEM.</description><identifier>ISSN: 0266-352X</identifier><identifier>EISSN: 1873-7633</identifier><identifier>DOI: 10.1016/j.compgeo.2019.04.001</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Computer simulation ; Cracks ; Deposition ; Dip slope, discrete element method ; Failure modes ; Friction ; High resistance ; Interface, landslide ; Landslides ; Particulates ; Planar sliding ; Powder injection molding ; Simulation ; Sliding ; Slumping ; Velocity</subject><ispartof>Computers and geotechnics, 2019-08, Vol.112, p.51-59</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8384c55eacba7eac7eee930ec356d170edc7ecdc75f3b48e33c93e0a090cdeaf3</citedby><cites>FETCH-LOGICAL-c337t-8384c55eacba7eac7eee930ec356d170edc7ecdc75f3b48e33c93e0a090cdeaf3</cites><orcidid>0000-0002-5672-402X ; 0000-0001-6519-4238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compgeo.2019.04.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Chiu, Chia-Chi</creatorcontrib><creatorcontrib>Weng, Meng-Chia</creatorcontrib><title>DEM simulation of planar sliding using a particulate interface model considering velocity-dependent friction</title><title>Computers and geotechnics</title><description>Planar sliding is a typical failure mode of landslides, in which an unstable rock block slides along a weak plane, resulting in a rapid movement. This study proposes a particulate interface model (PIM) that considers velocity-dependent friction behavior to simulate the planar sliding behavior of the particulate DEM. To validate the performance of the proposed model, the results of a DEM simulation of the planar sliding of a rigid block are compared with the analytical dynamic solution. The results reveal that the PIM simulation is consistent with the analytical dynamic solution with or without consideration of the velocity-dependent friction law. The ordinary contact model does not accurately reflect the theoretical dynamics owing to the high resistance. The smooth-joint model underestimated the shear resisting force of the interface and yielded excessively high velocity and displacement of the block. With respect to the deposition distribution, the different interface models yielded the various velocities before impact, and therefore various failure patterns of the block and appearances of the deposition. The block velocity significantly influences the number of cracks. The results of the analysis reveal that the PIM can capture the planar sliding and deposition behavior of particulate DEM.</description><subject>Computer simulation</subject><subject>Cracks</subject><subject>Deposition</subject><subject>Dip slope, discrete element method</subject><subject>Failure modes</subject><subject>Friction</subject><subject>High resistance</subject><subject>Interface, landslide</subject><subject>Landslides</subject><subject>Particulates</subject><subject>Planar sliding</subject><subject>Powder injection molding</subject><subject>Simulation</subject><subject>Sliding</subject><subject>Slumping</subject><subject>Velocity</subject><issn>0266-352X</issn><issn>1873-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK7-CULAc2vS9PMksq4fsOJFwVvITqZLSpvUpLuw_70p693LGxh-7w3zCLnlLOWMl_ddCm4Yd-jSjPEmZXnKGD8jC15XIqlKIc7JgmVlmYgi-74kVyF0ESibulmQ_mn9ToMZ9r2ajLPUtXTslVWeht5oY3d0H2ZVdFR-MjBzSI2d0LcKkA5OY0_B2WA0-pk8YO_ATMdE44hWo51o6w3M6dfkolV9wJu_uSRfz-vP1Wuy-Xh5Wz1uEhCimpJa1DkUBSrYqipqhYiNYAiiKDWvGOq4gihFK7Z5jUJAI5Ap1jDQqFqxJHen3NG7nz2GSXZu7208KbOsqMqa8YxHqjhR4F0IHls5ejMof5ScyblY2cm_YuVcrGS5jL1F38PJh_GFg0EvAxi0gNp4hElqZ_5J-AU8S4fk</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Chiu, Chia-Chi</creator><creator>Weng, Meng-Chia</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5672-402X</orcidid><orcidid>https://orcid.org/0000-0001-6519-4238</orcidid></search><sort><creationdate>201908</creationdate><title>DEM simulation of planar sliding using a particulate interface model considering velocity-dependent friction</title><author>Chiu, Chia-Chi ; Weng, Meng-Chia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8384c55eacba7eac7eee930ec356d170edc7ecdc75f3b48e33c93e0a090cdeaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Cracks</topic><topic>Deposition</topic><topic>Dip slope, discrete element method</topic><topic>Failure modes</topic><topic>Friction</topic><topic>High resistance</topic><topic>Interface, landslide</topic><topic>Landslides</topic><topic>Particulates</topic><topic>Planar sliding</topic><topic>Powder injection molding</topic><topic>Simulation</topic><topic>Sliding</topic><topic>Slumping</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Chia-Chi</creatorcontrib><creatorcontrib>Weng, Meng-Chia</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and geotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Chia-Chi</au><au>Weng, Meng-Chia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DEM simulation of planar sliding using a particulate interface model considering velocity-dependent friction</atitle><jtitle>Computers and geotechnics</jtitle><date>2019-08</date><risdate>2019</risdate><volume>112</volume><spage>51</spage><epage>59</epage><pages>51-59</pages><issn>0266-352X</issn><eissn>1873-7633</eissn><abstract>Planar sliding is a typical failure mode of landslides, in which an unstable rock block slides along a weak plane, resulting in a rapid movement. This study proposes a particulate interface model (PIM) that considers velocity-dependent friction behavior to simulate the planar sliding behavior of the particulate DEM. To validate the performance of the proposed model, the results of a DEM simulation of the planar sliding of a rigid block are compared with the analytical dynamic solution. The results reveal that the PIM simulation is consistent with the analytical dynamic solution with or without consideration of the velocity-dependent friction law. The ordinary contact model does not accurately reflect the theoretical dynamics owing to the high resistance. The smooth-joint model underestimated the shear resisting force of the interface and yielded excessively high velocity and displacement of the block. With respect to the deposition distribution, the different interface models yielded the various velocities before impact, and therefore various failure patterns of the block and appearances of the deposition. The block velocity significantly influences the number of cracks. The results of the analysis reveal that the PIM can capture the planar sliding and deposition behavior of particulate DEM.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compgeo.2019.04.001</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5672-402X</orcidid><orcidid>https://orcid.org/0000-0001-6519-4238</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-352X |
ispartof | Computers and geotechnics, 2019-08, Vol.112, p.51-59 |
issn | 0266-352X 1873-7633 |
language | eng |
recordid | cdi_proquest_journals_2257680121 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Computer simulation Cracks Deposition Dip slope, discrete element method Failure modes Friction High resistance Interface, landslide Landslides Particulates Planar sliding Powder injection molding Simulation Sliding Slumping Velocity |
title | DEM simulation of planar sliding using a particulate interface model considering velocity-dependent friction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DEM%20simulation%20of%20planar%20sliding%20using%20a%20particulate%20interface%20model%20considering%20velocity-dependent%20friction&rft.jtitle=Computers%20and%20geotechnics&rft.au=Chiu,%20Chia-Chi&rft.date=2019-08&rft.volume=112&rft.spage=51&rft.epage=59&rft.pages=51-59&rft.issn=0266-352X&rft.eissn=1873-7633&rft_id=info:doi/10.1016/j.compgeo.2019.04.001&rft_dat=%3Cproquest_cross%3E2257680121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257680121&rft_id=info:pmid/&rft_els_id=S0266352X19301041&rfr_iscdi=true |