DEM simulation of planar sliding using a particulate interface model considering velocity-dependent friction

Planar sliding is a typical failure mode of landslides, in which an unstable rock block slides along a weak plane, resulting in a rapid movement. This study proposes a particulate interface model (PIM) that considers velocity-dependent friction behavior to simulate the planar sliding behavior of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and geotechnics 2019-08, Vol.112, p.51-59
Hauptverfasser: Chiu, Chia-Chi, Weng, Meng-Chia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue
container_start_page 51
container_title Computers and geotechnics
container_volume 112
creator Chiu, Chia-Chi
Weng, Meng-Chia
description Planar sliding is a typical failure mode of landslides, in which an unstable rock block slides along a weak plane, resulting in a rapid movement. This study proposes a particulate interface model (PIM) that considers velocity-dependent friction behavior to simulate the planar sliding behavior of the particulate DEM. To validate the performance of the proposed model, the results of a DEM simulation of the planar sliding of a rigid block are compared with the analytical dynamic solution. The results reveal that the PIM simulation is consistent with the analytical dynamic solution with or without consideration of the velocity-dependent friction law. The ordinary contact model does not accurately reflect the theoretical dynamics owing to the high resistance. The smooth-joint model underestimated the shear resisting force of the interface and yielded excessively high velocity and displacement of the block. With respect to the deposition distribution, the different interface models yielded the various velocities before impact, and therefore various failure patterns of the block and appearances of the deposition. The block velocity significantly influences the number of cracks. The results of the analysis reveal that the PIM can capture the planar sliding and deposition behavior of particulate DEM.
doi_str_mv 10.1016/j.compgeo.2019.04.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2257680121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266352X19301041</els_id><sourcerecordid>2257680121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8384c55eacba7eac7eee930ec356d170edc7ecdc75f3b48e33c93e0a090cdeaf3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK7-CULAc2vS9PMksq4fsOJFwVvITqZLSpvUpLuw_70p693LGxh-7w3zCLnlLOWMl_ddCm4Yd-jSjPEmZXnKGD8jC15XIqlKIc7JgmVlmYgi-74kVyF0ESibulmQ_mn9ToMZ9r2ajLPUtXTslVWeht5oY3d0H2ZVdFR-MjBzSI2d0LcKkA5OY0_B2WA0-pk8YO_ATMdE44hWo51o6w3M6dfkolV9wJu_uSRfz-vP1Wuy-Xh5Wz1uEhCimpJa1DkUBSrYqipqhYiNYAiiKDWvGOq4gihFK7Z5jUJAI5Ap1jDQqFqxJHen3NG7nz2GSXZu7208KbOsqMqa8YxHqjhR4F0IHls5ejMof5ScyblY2cm_YuVcrGS5jL1F38PJh_GFg0EvAxi0gNp4hElqZ_5J-AU8S4fk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257680121</pqid></control><display><type>article</type><title>DEM simulation of planar sliding using a particulate interface model considering velocity-dependent friction</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chiu, Chia-Chi ; Weng, Meng-Chia</creator><creatorcontrib>Chiu, Chia-Chi ; Weng, Meng-Chia</creatorcontrib><description>Planar sliding is a typical failure mode of landslides, in which an unstable rock block slides along a weak plane, resulting in a rapid movement. This study proposes a particulate interface model (PIM) that considers velocity-dependent friction behavior to simulate the planar sliding behavior of the particulate DEM. To validate the performance of the proposed model, the results of a DEM simulation of the planar sliding of a rigid block are compared with the analytical dynamic solution. The results reveal that the PIM simulation is consistent with the analytical dynamic solution with or without consideration of the velocity-dependent friction law. The ordinary contact model does not accurately reflect the theoretical dynamics owing to the high resistance. The smooth-joint model underestimated the shear resisting force of the interface and yielded excessively high velocity and displacement of the block. With respect to the deposition distribution, the different interface models yielded the various velocities before impact, and therefore various failure patterns of the block and appearances of the deposition. The block velocity significantly influences the number of cracks. The results of the analysis reveal that the PIM can capture the planar sliding and deposition behavior of particulate DEM.</description><identifier>ISSN: 0266-352X</identifier><identifier>EISSN: 1873-7633</identifier><identifier>DOI: 10.1016/j.compgeo.2019.04.001</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Computer simulation ; Cracks ; Deposition ; Dip slope, discrete element method ; Failure modes ; Friction ; High resistance ; Interface, landslide ; Landslides ; Particulates ; Planar sliding ; Powder injection molding ; Simulation ; Sliding ; Slumping ; Velocity</subject><ispartof>Computers and geotechnics, 2019-08, Vol.112, p.51-59</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8384c55eacba7eac7eee930ec356d170edc7ecdc75f3b48e33c93e0a090cdeaf3</citedby><cites>FETCH-LOGICAL-c337t-8384c55eacba7eac7eee930ec356d170edc7ecdc75f3b48e33c93e0a090cdeaf3</cites><orcidid>0000-0002-5672-402X ; 0000-0001-6519-4238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compgeo.2019.04.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Chiu, Chia-Chi</creatorcontrib><creatorcontrib>Weng, Meng-Chia</creatorcontrib><title>DEM simulation of planar sliding using a particulate interface model considering velocity-dependent friction</title><title>Computers and geotechnics</title><description>Planar sliding is a typical failure mode of landslides, in which an unstable rock block slides along a weak plane, resulting in a rapid movement. This study proposes a particulate interface model (PIM) that considers velocity-dependent friction behavior to simulate the planar sliding behavior of the particulate DEM. To validate the performance of the proposed model, the results of a DEM simulation of the planar sliding of a rigid block are compared with the analytical dynamic solution. The results reveal that the PIM simulation is consistent with the analytical dynamic solution with or without consideration of the velocity-dependent friction law. The ordinary contact model does not accurately reflect the theoretical dynamics owing to the high resistance. The smooth-joint model underestimated the shear resisting force of the interface and yielded excessively high velocity and displacement of the block. With respect to the deposition distribution, the different interface models yielded the various velocities before impact, and therefore various failure patterns of the block and appearances of the deposition. The block velocity significantly influences the number of cracks. The results of the analysis reveal that the PIM can capture the planar sliding and deposition behavior of particulate DEM.</description><subject>Computer simulation</subject><subject>Cracks</subject><subject>Deposition</subject><subject>Dip slope, discrete element method</subject><subject>Failure modes</subject><subject>Friction</subject><subject>High resistance</subject><subject>Interface, landslide</subject><subject>Landslides</subject><subject>Particulates</subject><subject>Planar sliding</subject><subject>Powder injection molding</subject><subject>Simulation</subject><subject>Sliding</subject><subject>Slumping</subject><subject>Velocity</subject><issn>0266-352X</issn><issn>1873-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK7-CULAc2vS9PMksq4fsOJFwVvITqZLSpvUpLuw_70p693LGxh-7w3zCLnlLOWMl_ddCm4Yd-jSjPEmZXnKGD8jC15XIqlKIc7JgmVlmYgi-74kVyF0ESibulmQ_mn9ToMZ9r2ajLPUtXTslVWeht5oY3d0H2ZVdFR-MjBzSI2d0LcKkA5OY0_B2WA0-pk8YO_ATMdE44hWo51o6w3M6dfkolV9wJu_uSRfz-vP1Wuy-Xh5Wz1uEhCimpJa1DkUBSrYqipqhYiNYAiiKDWvGOq4gihFK7Z5jUJAI5Ap1jDQqFqxJHen3NG7nz2GSXZu7208KbOsqMqa8YxHqjhR4F0IHls5ejMof5ScyblY2cm_YuVcrGS5jL1F38PJh_GFg0EvAxi0gNp4hElqZ_5J-AU8S4fk</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Chiu, Chia-Chi</creator><creator>Weng, Meng-Chia</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5672-402X</orcidid><orcidid>https://orcid.org/0000-0001-6519-4238</orcidid></search><sort><creationdate>201908</creationdate><title>DEM simulation of planar sliding using a particulate interface model considering velocity-dependent friction</title><author>Chiu, Chia-Chi ; Weng, Meng-Chia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8384c55eacba7eac7eee930ec356d170edc7ecdc75f3b48e33c93e0a090cdeaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Cracks</topic><topic>Deposition</topic><topic>Dip slope, discrete element method</topic><topic>Failure modes</topic><topic>Friction</topic><topic>High resistance</topic><topic>Interface, landslide</topic><topic>Landslides</topic><topic>Particulates</topic><topic>Planar sliding</topic><topic>Powder injection molding</topic><topic>Simulation</topic><topic>Sliding</topic><topic>Slumping</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Chia-Chi</creatorcontrib><creatorcontrib>Weng, Meng-Chia</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and geotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Chia-Chi</au><au>Weng, Meng-Chia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DEM simulation of planar sliding using a particulate interface model considering velocity-dependent friction</atitle><jtitle>Computers and geotechnics</jtitle><date>2019-08</date><risdate>2019</risdate><volume>112</volume><spage>51</spage><epage>59</epage><pages>51-59</pages><issn>0266-352X</issn><eissn>1873-7633</eissn><abstract>Planar sliding is a typical failure mode of landslides, in which an unstable rock block slides along a weak plane, resulting in a rapid movement. This study proposes a particulate interface model (PIM) that considers velocity-dependent friction behavior to simulate the planar sliding behavior of the particulate DEM. To validate the performance of the proposed model, the results of a DEM simulation of the planar sliding of a rigid block are compared with the analytical dynamic solution. The results reveal that the PIM simulation is consistent with the analytical dynamic solution with or without consideration of the velocity-dependent friction law. The ordinary contact model does not accurately reflect the theoretical dynamics owing to the high resistance. The smooth-joint model underestimated the shear resisting force of the interface and yielded excessively high velocity and displacement of the block. With respect to the deposition distribution, the different interface models yielded the various velocities before impact, and therefore various failure patterns of the block and appearances of the deposition. The block velocity significantly influences the number of cracks. The results of the analysis reveal that the PIM can capture the planar sliding and deposition behavior of particulate DEM.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compgeo.2019.04.001</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5672-402X</orcidid><orcidid>https://orcid.org/0000-0001-6519-4238</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-352X
ispartof Computers and geotechnics, 2019-08, Vol.112, p.51-59
issn 0266-352X
1873-7633
language eng
recordid cdi_proquest_journals_2257680121
source Elsevier ScienceDirect Journals Complete
subjects Computer simulation
Cracks
Deposition
Dip slope, discrete element method
Failure modes
Friction
High resistance
Interface, landslide
Landslides
Particulates
Planar sliding
Powder injection molding
Simulation
Sliding
Slumping
Velocity
title DEM simulation of planar sliding using a particulate interface model considering velocity-dependent friction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DEM%20simulation%20of%20planar%20sliding%20using%20a%20particulate%20interface%20model%20considering%20velocity-dependent%20friction&rft.jtitle=Computers%20and%20geotechnics&rft.au=Chiu,%20Chia-Chi&rft.date=2019-08&rft.volume=112&rft.spage=51&rft.epage=59&rft.pages=51-59&rft.issn=0266-352X&rft.eissn=1873-7633&rft_id=info:doi/10.1016/j.compgeo.2019.04.001&rft_dat=%3Cproquest_cross%3E2257680121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257680121&rft_id=info:pmid/&rft_els_id=S0266352X19301041&rfr_iscdi=true