Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges

We introduce our efforts towards building a universal neural machine translation (NMT) system capable of translating between any language pair. We set a milestone towards this goal by building a single massively multilingual NMT model handling 103 languages trained on over 25 billion examples. Our s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-07
Hauptverfasser: Arivazhagan, Naveen, Bapna, Ankur, Firat, Orhan, Lepikhin, Dmitry, Johnson, Melvin, Krikun, Maxim, Mia Xu Chen, Cao, Yuan, Foster, George, Cherry, Colin, Macherey, Wolfgang, Chen, Zhifeng, Wu, Yonghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Arivazhagan, Naveen
Bapna, Ankur
Firat, Orhan
Lepikhin, Dmitry
Johnson, Melvin
Krikun, Maxim
Mia Xu Chen
Cao, Yuan
Foster, George
Cherry, Colin
Macherey, Wolfgang
Chen, Zhifeng
Wu, Yonghui
description We introduce our efforts towards building a universal neural machine translation (NMT) system capable of translating between any language pair. We set a milestone towards this goal by building a single massively multilingual NMT model handling 103 languages trained on over 25 billion examples. Our system demonstrates effective transfer learning ability, significantly improving translation quality of low-resource languages, while keeping high-resource language translation quality on-par with competitive bilingual baselines. We provide in-depth analysis of various aspects of model building that are crucial to achieving quality and practicality in universal NMT. While we prototype a high-quality universal translation system, our extensive empirical analysis exposes issues that need to be further addressed, and we suggest directions for future research.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2256350970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2256350970</sourcerecordid><originalsourceid>FETCH-proquest_journals_22563509703</originalsourceid><addsrcrecordid>eNqNi7EKwjAUAIMgWLT_8MC5EBPbqmuxuNRJdCzBxjbl8ap9ieDf28EPcLrh7mYiUlpvkt1WqYWImXsppcpylaY6EtfKMLu3xQ9UAb1DR20wCGcbxgmVuXeOLFxGQ4zGu4HAEfjOws1hc4DSUTMtDIYaKDqDaKm1vBLzh0G28Y9LsS6Pl-KUPMfhFSz7uh_CSJOqlUozncp9LvV_1RcMp0EF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256350970</pqid></control><display><type>article</type><title>Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges</title><source>Free E- Journals</source><creator>Arivazhagan, Naveen ; Bapna, Ankur ; Firat, Orhan ; Lepikhin, Dmitry ; Johnson, Melvin ; Krikun, Maxim ; Mia Xu Chen ; Cao, Yuan ; Foster, George ; Cherry, Colin ; Macherey, Wolfgang ; Chen, Zhifeng ; Wu, Yonghui</creator><creatorcontrib>Arivazhagan, Naveen ; Bapna, Ankur ; Firat, Orhan ; Lepikhin, Dmitry ; Johnson, Melvin ; Krikun, Maxim ; Mia Xu Chen ; Cao, Yuan ; Foster, George ; Cherry, Colin ; Macherey, Wolfgang ; Chen, Zhifeng ; Wu, Yonghui</creatorcontrib><description>We introduce our efforts towards building a universal neural machine translation (NMT) system capable of translating between any language pair. We set a milestone towards this goal by building a single massively multilingual NMT model handling 103 languages trained on over 25 billion examples. Our system demonstrates effective transfer learning ability, significantly improving translation quality of low-resource languages, while keeping high-resource language translation quality on-par with competitive bilingual baselines. We provide in-depth analysis of various aspects of model building that are crucial to achieving quality and practicality in universal NMT. While we prototype a high-quality universal translation system, our extensive empirical analysis exposes issues that need to be further addressed, and we suggest directions for future research.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Empirical analysis ; Language translation ; Machine translation ; Multilingualism ; Translating</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Arivazhagan, Naveen</creatorcontrib><creatorcontrib>Bapna, Ankur</creatorcontrib><creatorcontrib>Firat, Orhan</creatorcontrib><creatorcontrib>Lepikhin, Dmitry</creatorcontrib><creatorcontrib>Johnson, Melvin</creatorcontrib><creatorcontrib>Krikun, Maxim</creatorcontrib><creatorcontrib>Mia Xu Chen</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Foster, George</creatorcontrib><creatorcontrib>Cherry, Colin</creatorcontrib><creatorcontrib>Macherey, Wolfgang</creatorcontrib><creatorcontrib>Chen, Zhifeng</creatorcontrib><creatorcontrib>Wu, Yonghui</creatorcontrib><title>Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges</title><title>arXiv.org</title><description>We introduce our efforts towards building a universal neural machine translation (NMT) system capable of translating between any language pair. We set a milestone towards this goal by building a single massively multilingual NMT model handling 103 languages trained on over 25 billion examples. Our system demonstrates effective transfer learning ability, significantly improving translation quality of low-resource languages, while keeping high-resource language translation quality on-par with competitive bilingual baselines. We provide in-depth analysis of various aspects of model building that are crucial to achieving quality and practicality in universal NMT. While we prototype a high-quality universal translation system, our extensive empirical analysis exposes issues that need to be further addressed, and we suggest directions for future research.</description><subject>Empirical analysis</subject><subject>Language translation</subject><subject>Machine translation</subject><subject>Multilingualism</subject><subject>Translating</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7EKwjAUAIMgWLT_8MC5EBPbqmuxuNRJdCzBxjbl8ap9ieDf28EPcLrh7mYiUlpvkt1WqYWImXsppcpylaY6EtfKMLu3xQ9UAb1DR20wCGcbxgmVuXeOLFxGQ4zGu4HAEfjOws1hc4DSUTMtDIYaKDqDaKm1vBLzh0G28Y9LsS6Pl-KUPMfhFSz7uh_CSJOqlUozncp9LvV_1RcMp0EF</recordid><startdate>20190711</startdate><enddate>20190711</enddate><creator>Arivazhagan, Naveen</creator><creator>Bapna, Ankur</creator><creator>Firat, Orhan</creator><creator>Lepikhin, Dmitry</creator><creator>Johnson, Melvin</creator><creator>Krikun, Maxim</creator><creator>Mia Xu Chen</creator><creator>Cao, Yuan</creator><creator>Foster, George</creator><creator>Cherry, Colin</creator><creator>Macherey, Wolfgang</creator><creator>Chen, Zhifeng</creator><creator>Wu, Yonghui</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190711</creationdate><title>Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges</title><author>Arivazhagan, Naveen ; Bapna, Ankur ; Firat, Orhan ; Lepikhin, Dmitry ; Johnson, Melvin ; Krikun, Maxim ; Mia Xu Chen ; Cao, Yuan ; Foster, George ; Cherry, Colin ; Macherey, Wolfgang ; Chen, Zhifeng ; Wu, Yonghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22563509703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Empirical analysis</topic><topic>Language translation</topic><topic>Machine translation</topic><topic>Multilingualism</topic><topic>Translating</topic><toplevel>online_resources</toplevel><creatorcontrib>Arivazhagan, Naveen</creatorcontrib><creatorcontrib>Bapna, Ankur</creatorcontrib><creatorcontrib>Firat, Orhan</creatorcontrib><creatorcontrib>Lepikhin, Dmitry</creatorcontrib><creatorcontrib>Johnson, Melvin</creatorcontrib><creatorcontrib>Krikun, Maxim</creatorcontrib><creatorcontrib>Mia Xu Chen</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Foster, George</creatorcontrib><creatorcontrib>Cherry, Colin</creatorcontrib><creatorcontrib>Macherey, Wolfgang</creatorcontrib><creatorcontrib>Chen, Zhifeng</creatorcontrib><creatorcontrib>Wu, Yonghui</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arivazhagan, Naveen</au><au>Bapna, Ankur</au><au>Firat, Orhan</au><au>Lepikhin, Dmitry</au><au>Johnson, Melvin</au><au>Krikun, Maxim</au><au>Mia Xu Chen</au><au>Cao, Yuan</au><au>Foster, George</au><au>Cherry, Colin</au><au>Macherey, Wolfgang</au><au>Chen, Zhifeng</au><au>Wu, Yonghui</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges</atitle><jtitle>arXiv.org</jtitle><date>2019-07-11</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We introduce our efforts towards building a universal neural machine translation (NMT) system capable of translating between any language pair. We set a milestone towards this goal by building a single massively multilingual NMT model handling 103 languages trained on over 25 billion examples. Our system demonstrates effective transfer learning ability, significantly improving translation quality of low-resource languages, while keeping high-resource language translation quality on-par with competitive bilingual baselines. We provide in-depth analysis of various aspects of model building that are crucial to achieving quality and practicality in universal NMT. While we prototype a high-quality universal translation system, our extensive empirical analysis exposes issues that need to be further addressed, and we suggest directions for future research.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2256350970
source Free E- Journals
subjects Empirical analysis
Language translation
Machine translation
Multilingualism
Translating
title Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Massively%20Multilingual%20Neural%20Machine%20Translation%20in%20the%20Wild:%20Findings%20and%20Challenges&rft.jtitle=arXiv.org&rft.au=Arivazhagan,%20Naveen&rft.date=2019-07-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2256350970%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256350970&rft_id=info:pmid/&rfr_iscdi=true