Reducibility of Linear Differential Systems to Linear Differential Equations

Lyapunov reducibility of any bounded and sometimes unbounded linear homogeneous differential system to some bounded linear homogeneous differential equation is established. The preservation of the additional property of periodicity of coefficients is guaranteed, and for two-dimensional or complex sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Moscow University mathematics bulletin 2019-05, Vol.74 (3), p.121-126
1. Verfasser: Sergeev, I. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue 3
container_start_page 121
container_title Moscow University mathematics bulletin
container_volume 74
creator Sergeev, I. N.
description Lyapunov reducibility of any bounded and sometimes unbounded linear homogeneous differential system to some bounded linear homogeneous differential equation is established. The preservation of the additional property of periodicity of coefficients is guaranteed, and for two-dimensional or complex systems the constancy of their coefficients is preserved. The differences in feasibility of asymptotic and generalized Lyapunov reducibility from Lyapunov one are indicated.
doi_str_mv 10.3103/S0027132219030045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2256165257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2256165257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7ff680c9b6637ce061f2e15373fce93f9e6905746a5d451ba3f4b4d32fbe4cd73</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFZ_gLuA6-jceaWzlFofEBCsrsNkckempEk7M1nk39tQwYW6uovzfefCIeQa6C0Hyu_WlLICOGOgKadUyBMyA81FvhBCnJLZFOdTfk4uYtxQKqUWMCPlGzaD9bVvfRqz3mWl79CE7ME7hwG75E2brceYcBuz1P8Zr_aDSb7v4iU5c6aNePV95-TjcfW-fM7L16eX5X2ZWw4q5YVzakGtrpXihUWqwDEEyQvuLGruNCpNZSGUkY2QUBvuRC0azlyNwjYFn5ObY-8u9PsBY6o2_RC6w8uKMalASSYnCo6UDX2MAV21C35rwlgBrabRql-jHRx2dOKB7T4x_DT_L30BqdVtsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256165257</pqid></control><display><type>article</type><title>Reducibility of Linear Differential Systems to Linear Differential Equations</title><source>SpringerLink Journals</source><creator>Sergeev, I. N.</creator><creatorcontrib>Sergeev, I. N.</creatorcontrib><description>Lyapunov reducibility of any bounded and sometimes unbounded linear homogeneous differential system to some bounded linear homogeneous differential equation is established. The preservation of the additional property of periodicity of coefficients is guaranteed, and for two-dimensional or complex systems the constancy of their coefficients is preserved. The differences in feasibility of asymptotic and generalized Lyapunov reducibility from Lyapunov one are indicated.</description><identifier>ISSN: 0027-1322</identifier><identifier>EISSN: 1934-8444</identifier><identifier>DOI: 10.3103/S0027132219030045</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Complex systems ; Differential equations ; Mathematics ; Mathematics and Statistics ; Periodic variations</subject><ispartof>Moscow University mathematics bulletin, 2019-05, Vol.74 (3), p.121-126</ispartof><rights>Allerton Press, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7ff680c9b6637ce061f2e15373fce93f9e6905746a5d451ba3f4b4d32fbe4cd73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0027132219030045$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0027132219030045$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sergeev, I. N.</creatorcontrib><title>Reducibility of Linear Differential Systems to Linear Differential Equations</title><title>Moscow University mathematics bulletin</title><addtitle>Moscow Univ. Math. Bull</addtitle><description>Lyapunov reducibility of any bounded and sometimes unbounded linear homogeneous differential system to some bounded linear homogeneous differential equation is established. The preservation of the additional property of periodicity of coefficients is guaranteed, and for two-dimensional or complex systems the constancy of their coefficients is preserved. The differences in feasibility of asymptotic and generalized Lyapunov reducibility from Lyapunov one are indicated.</description><subject>Analysis</subject><subject>Complex systems</subject><subject>Differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Periodic variations</subject><issn>0027-1322</issn><issn>1934-8444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFZ_gLuA6-jceaWzlFofEBCsrsNkckempEk7M1nk39tQwYW6uovzfefCIeQa6C0Hyu_WlLICOGOgKadUyBMyA81FvhBCnJLZFOdTfk4uYtxQKqUWMCPlGzaD9bVvfRqz3mWl79CE7ME7hwG75E2brceYcBuz1P8Zr_aDSb7v4iU5c6aNePV95-TjcfW-fM7L16eX5X2ZWw4q5YVzakGtrpXihUWqwDEEyQvuLGruNCpNZSGUkY2QUBvuRC0azlyNwjYFn5ObY-8u9PsBY6o2_RC6w8uKMalASSYnCo6UDX2MAV21C35rwlgBrabRql-jHRx2dOKB7T4x_DT_L30BqdVtsA</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Sergeev, I. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190501</creationdate><title>Reducibility of Linear Differential Systems to Linear Differential Equations</title><author>Sergeev, I. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7ff680c9b6637ce061f2e15373fce93f9e6905746a5d451ba3f4b4d32fbe4cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Complex systems</topic><topic>Differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Periodic variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sergeev, I. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Moscow University mathematics bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sergeev, I. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducibility of Linear Differential Systems to Linear Differential Equations</atitle><jtitle>Moscow University mathematics bulletin</jtitle><stitle>Moscow Univ. Math. Bull</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>74</volume><issue>3</issue><spage>121</spage><epage>126</epage><pages>121-126</pages><issn>0027-1322</issn><eissn>1934-8444</eissn><abstract>Lyapunov reducibility of any bounded and sometimes unbounded linear homogeneous differential system to some bounded linear homogeneous differential equation is established. The preservation of the additional property of periodicity of coefficients is guaranteed, and for two-dimensional or complex systems the constancy of their coefficients is preserved. The differences in feasibility of asymptotic and generalized Lyapunov reducibility from Lyapunov one are indicated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0027132219030045</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0027-1322
ispartof Moscow University mathematics bulletin, 2019-05, Vol.74 (3), p.121-126
issn 0027-1322
1934-8444
language eng
recordid cdi_proquest_journals_2256165257
source SpringerLink Journals
subjects Analysis
Complex systems
Differential equations
Mathematics
Mathematics and Statistics
Periodic variations
title Reducibility of Linear Differential Systems to Linear Differential Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducibility%20of%20Linear%20Differential%20Systems%20to%20Linear%20Differential%20Equations&rft.jtitle=Moscow%20University%20mathematics%20bulletin&rft.au=Sergeev,%20I.%20N.&rft.date=2019-05-01&rft.volume=74&rft.issue=3&rft.spage=121&rft.epage=126&rft.pages=121-126&rft.issn=0027-1322&rft.eissn=1934-8444&rft_id=info:doi/10.3103/S0027132219030045&rft_dat=%3Cproquest_cross%3E2256165257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256165257&rft_id=info:pmid/&rfr_iscdi=true