Reducibility of Linear Differential Systems to Linear Differential Equations
Lyapunov reducibility of any bounded and sometimes unbounded linear homogeneous differential system to some bounded linear homogeneous differential equation is established. The preservation of the additional property of periodicity of coefficients is guaranteed, and for two-dimensional or complex sy...
Gespeichert in:
Veröffentlicht in: | Moscow University mathematics bulletin 2019-05, Vol.74 (3), p.121-126 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126 |
---|---|
container_issue | 3 |
container_start_page | 121 |
container_title | Moscow University mathematics bulletin |
container_volume | 74 |
creator | Sergeev, I. N. |
description | Lyapunov reducibility of any bounded and sometimes unbounded linear homogeneous differential system to some bounded linear homogeneous differential equation is established. The preservation of the additional property of periodicity of coefficients is guaranteed, and for two-dimensional or complex systems the constancy of their coefficients is preserved. The differences in feasibility of asymptotic and generalized Lyapunov reducibility from Lyapunov one are indicated. |
doi_str_mv | 10.3103/S0027132219030045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2256165257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2256165257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7ff680c9b6637ce061f2e15373fce93f9e6905746a5d451ba3f4b4d32fbe4cd73</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFZ_gLuA6-jceaWzlFofEBCsrsNkckempEk7M1nk39tQwYW6uovzfefCIeQa6C0Hyu_WlLICOGOgKadUyBMyA81FvhBCnJLZFOdTfk4uYtxQKqUWMCPlGzaD9bVvfRqz3mWl79CE7ME7hwG75E2brceYcBuz1P8Zr_aDSb7v4iU5c6aNePV95-TjcfW-fM7L16eX5X2ZWw4q5YVzakGtrpXihUWqwDEEyQvuLGruNCpNZSGUkY2QUBvuRC0azlyNwjYFn5ObY-8u9PsBY6o2_RC6w8uKMalASSYnCo6UDX2MAV21C35rwlgBrabRql-jHRx2dOKB7T4x_DT_L30BqdVtsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256165257</pqid></control><display><type>article</type><title>Reducibility of Linear Differential Systems to Linear Differential Equations</title><source>SpringerLink Journals</source><creator>Sergeev, I. N.</creator><creatorcontrib>Sergeev, I. N.</creatorcontrib><description>Lyapunov reducibility of any bounded and sometimes unbounded linear homogeneous differential system to some bounded linear homogeneous differential equation is established. The preservation of the additional property of periodicity of coefficients is guaranteed, and for two-dimensional or complex systems the constancy of their coefficients is preserved. The differences in feasibility of asymptotic and generalized Lyapunov reducibility from Lyapunov one are indicated.</description><identifier>ISSN: 0027-1322</identifier><identifier>EISSN: 1934-8444</identifier><identifier>DOI: 10.3103/S0027132219030045</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Complex systems ; Differential equations ; Mathematics ; Mathematics and Statistics ; Periodic variations</subject><ispartof>Moscow University mathematics bulletin, 2019-05, Vol.74 (3), p.121-126</ispartof><rights>Allerton Press, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7ff680c9b6637ce061f2e15373fce93f9e6905746a5d451ba3f4b4d32fbe4cd73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0027132219030045$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0027132219030045$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sergeev, I. N.</creatorcontrib><title>Reducibility of Linear Differential Systems to Linear Differential Equations</title><title>Moscow University mathematics bulletin</title><addtitle>Moscow Univ. Math. Bull</addtitle><description>Lyapunov reducibility of any bounded and sometimes unbounded linear homogeneous differential system to some bounded linear homogeneous differential equation is established. The preservation of the additional property of periodicity of coefficients is guaranteed, and for two-dimensional or complex systems the constancy of their coefficients is preserved. The differences in feasibility of asymptotic and generalized Lyapunov reducibility from Lyapunov one are indicated.</description><subject>Analysis</subject><subject>Complex systems</subject><subject>Differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Periodic variations</subject><issn>0027-1322</issn><issn>1934-8444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFZ_gLuA6-jceaWzlFofEBCsrsNkckempEk7M1nk39tQwYW6uovzfefCIeQa6C0Hyu_WlLICOGOgKadUyBMyA81FvhBCnJLZFOdTfk4uYtxQKqUWMCPlGzaD9bVvfRqz3mWl79CE7ME7hwG75E2brceYcBuz1P8Zr_aDSb7v4iU5c6aNePV95-TjcfW-fM7L16eX5X2ZWw4q5YVzakGtrpXihUWqwDEEyQvuLGruNCpNZSGUkY2QUBvuRC0azlyNwjYFn5ObY-8u9PsBY6o2_RC6w8uKMalASSYnCo6UDX2MAV21C35rwlgBrabRql-jHRx2dOKB7T4x_DT_L30BqdVtsA</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Sergeev, I. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190501</creationdate><title>Reducibility of Linear Differential Systems to Linear Differential Equations</title><author>Sergeev, I. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7ff680c9b6637ce061f2e15373fce93f9e6905746a5d451ba3f4b4d32fbe4cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Complex systems</topic><topic>Differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Periodic variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sergeev, I. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Moscow University mathematics bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sergeev, I. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducibility of Linear Differential Systems to Linear Differential Equations</atitle><jtitle>Moscow University mathematics bulletin</jtitle><stitle>Moscow Univ. Math. Bull</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>74</volume><issue>3</issue><spage>121</spage><epage>126</epage><pages>121-126</pages><issn>0027-1322</issn><eissn>1934-8444</eissn><abstract>Lyapunov reducibility of any bounded and sometimes unbounded linear homogeneous differential system to some bounded linear homogeneous differential equation is established. The preservation of the additional property of periodicity of coefficients is guaranteed, and for two-dimensional or complex systems the constancy of their coefficients is preserved. The differences in feasibility of asymptotic and generalized Lyapunov reducibility from Lyapunov one are indicated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0027132219030045</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-1322 |
ispartof | Moscow University mathematics bulletin, 2019-05, Vol.74 (3), p.121-126 |
issn | 0027-1322 1934-8444 |
language | eng |
recordid | cdi_proquest_journals_2256165257 |
source | SpringerLink Journals |
subjects | Analysis Complex systems Differential equations Mathematics Mathematics and Statistics Periodic variations |
title | Reducibility of Linear Differential Systems to Linear Differential Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducibility%20of%20Linear%20Differential%20Systems%20to%20Linear%20Differential%20Equations&rft.jtitle=Moscow%20University%20mathematics%20bulletin&rft.au=Sergeev,%20I.%20N.&rft.date=2019-05-01&rft.volume=74&rft.issue=3&rft.spage=121&rft.epage=126&rft.pages=121-126&rft.issn=0027-1322&rft.eissn=1934-8444&rft_id=info:doi/10.3103/S0027132219030045&rft_dat=%3Cproquest_cross%3E2256165257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256165257&rft_id=info:pmid/&rfr_iscdi=true |