Aesthetic guided deep regression network for image cropping
Cropping an image to improve its aesthetic quality is a challenging problem because aesthetic, which defines the harmony and beauty in the image, is “really in the eye of the beholder”. Even for the same image, different viewers might have various opinions of optimal composition with respect to aest...
Gespeichert in:
Veröffentlicht in: | Signal processing. Image communication 2019-09, Vol.77, p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Signal processing. Image communication |
container_volume | 77 |
creator | Lu, Peng Zhang, Hao Peng, XuJun Peng, Xiang |
description | Cropping an image to improve its aesthetic quality is a challenging problem because aesthetic, which defines the harmony and beauty in the image, is “really in the eye of the beholder”. Even for the same image, different viewers might have various opinions of optimal composition with respect to aesthetic. To accomplish this subjective task, a deep learning framework is designed where the visual fixations of the image is detected based on selected deep representations and an initial visual saliency rectangle is generated to include the interested objects consequently. Afterwards, a cropping rectangle is proposed by mapping the initial visual saliency bounding box to optimal cropping areas through a regression network, where the relationship between interested objects and the optimal composition of the image is discovered. The experimental results on public datasets show that the proposed method has the competitive results than state-of-the-art approaches.
•Learn the relationship between interested objects and optimal cropping window.•Accomplish the image cropping with high efficiency.•Investigate different saliency detection approaches for improving image cropping performance. |
doi_str_mv | 10.1016/j.image.2019.05.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2256120590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0923596518309329</els_id><sourcerecordid>2256120590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-1092eba1a182fc60e9129a92301e43e77c5faf12dfe5877d978884c4f6926ced3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1giMSfcOXEcCzFUFV9SJRaYreCcgwMkwU5A_Hvclpnplnvvee5l7BwhQ8DyssvcR91SxgFVBiIDhAO2wEqqlJdSHrIFKJ6nQpXimJ2E0AEAL0At2NWKwvRKkzNJO7uGmqQhGhNPracQ3NAnPU3fg39L7OCTHSUxfhhH17en7MjW74HO_uaSPd_ePK3v083j3cN6tUlNnuOUYmTTS401VtyaEkghV3X0AaQiJymNsLVF3lgSlZSNklVVFaawpeKloSZfsov93dEPn3P01d0w-z4iNeeiRA5CQdzK91tRLwRPVo8--vofjaC3LelO7_z1tiUNQseWYup6n6L4wJcjr4Nx1Ees82Qm3Qzu3_wvVlFwgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256120590</pqid></control><display><type>article</type><title>Aesthetic guided deep regression network for image cropping</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lu, Peng ; Zhang, Hao ; Peng, XuJun ; Peng, Xiang</creator><creatorcontrib>Lu, Peng ; Zhang, Hao ; Peng, XuJun ; Peng, Xiang</creatorcontrib><description>Cropping an image to improve its aesthetic quality is a challenging problem because aesthetic, which defines the harmony and beauty in the image, is “really in the eye of the beholder”. Even for the same image, different viewers might have various opinions of optimal composition with respect to aesthetic. To accomplish this subjective task, a deep learning framework is designed where the visual fixations of the image is detected based on selected deep representations and an initial visual saliency rectangle is generated to include the interested objects consequently. Afterwards, a cropping rectangle is proposed by mapping the initial visual saliency bounding box to optimal cropping areas through a regression network, where the relationship between interested objects and the optimal composition of the image is discovered. The experimental results on public datasets show that the proposed method has the competitive results than state-of-the-art approaches.
•Learn the relationship between interested objects and optimal cropping window.•Accomplish the image cropping with high efficiency.•Investigate different saliency detection approaches for improving image cropping performance.</description><identifier>ISSN: 0923-5965</identifier><identifier>EISSN: 1879-2677</identifier><identifier>DOI: 10.1016/j.image.2019.05.010</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Composition ; Deep neural networks ; Image composition ; Image detection ; Image quality ; Machine learning ; Mapping ; Regression ; Salience</subject><ispartof>Signal processing. Image communication, 2019-09, Vol.77, p.1-10</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-1092eba1a182fc60e9129a92301e43e77c5faf12dfe5877d978884c4f6926ced3</citedby><cites>FETCH-LOGICAL-c331t-1092eba1a182fc60e9129a92301e43e77c5faf12dfe5877d978884c4f6926ced3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0923596518309329$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Lu, Peng</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Peng, XuJun</creatorcontrib><creatorcontrib>Peng, Xiang</creatorcontrib><title>Aesthetic guided deep regression network for image cropping</title><title>Signal processing. Image communication</title><description>Cropping an image to improve its aesthetic quality is a challenging problem because aesthetic, which defines the harmony and beauty in the image, is “really in the eye of the beholder”. Even for the same image, different viewers might have various opinions of optimal composition with respect to aesthetic. To accomplish this subjective task, a deep learning framework is designed where the visual fixations of the image is detected based on selected deep representations and an initial visual saliency rectangle is generated to include the interested objects consequently. Afterwards, a cropping rectangle is proposed by mapping the initial visual saliency bounding box to optimal cropping areas through a regression network, where the relationship between interested objects and the optimal composition of the image is discovered. The experimental results on public datasets show that the proposed method has the competitive results than state-of-the-art approaches.
•Learn the relationship between interested objects and optimal cropping window.•Accomplish the image cropping with high efficiency.•Investigate different saliency detection approaches for improving image cropping performance.</description><subject>Composition</subject><subject>Deep neural networks</subject><subject>Image composition</subject><subject>Image detection</subject><subject>Image quality</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Regression</subject><subject>Salience</subject><issn>0923-5965</issn><issn>1879-2677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1giMSfcOXEcCzFUFV9SJRaYreCcgwMkwU5A_Hvclpnplnvvee5l7BwhQ8DyssvcR91SxgFVBiIDhAO2wEqqlJdSHrIFKJ6nQpXimJ2E0AEAL0At2NWKwvRKkzNJO7uGmqQhGhNPracQ3NAnPU3fg39L7OCTHSUxfhhH17en7MjW74HO_uaSPd_ePK3v083j3cN6tUlNnuOUYmTTS401VtyaEkghV3X0AaQiJymNsLVF3lgSlZSNklVVFaawpeKloSZfsov93dEPn3P01d0w-z4iNeeiRA5CQdzK91tRLwRPVo8--vofjaC3LelO7_z1tiUNQseWYup6n6L4wJcjr4Nx1Ees82Qm3Qzu3_wvVlFwgw</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Lu, Peng</creator><creator>Zhang, Hao</creator><creator>Peng, XuJun</creator><creator>Peng, Xiang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201909</creationdate><title>Aesthetic guided deep regression network for image cropping</title><author>Lu, Peng ; Zhang, Hao ; Peng, XuJun ; Peng, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-1092eba1a182fc60e9129a92301e43e77c5faf12dfe5877d978884c4f6926ced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Composition</topic><topic>Deep neural networks</topic><topic>Image composition</topic><topic>Image detection</topic><topic>Image quality</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Regression</topic><topic>Salience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Peng</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Peng, XuJun</creatorcontrib><creatorcontrib>Peng, Xiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing. Image communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Peng</au><au>Zhang, Hao</au><au>Peng, XuJun</au><au>Peng, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aesthetic guided deep regression network for image cropping</atitle><jtitle>Signal processing. Image communication</jtitle><date>2019-09</date><risdate>2019</risdate><volume>77</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0923-5965</issn><eissn>1879-2677</eissn><abstract>Cropping an image to improve its aesthetic quality is a challenging problem because aesthetic, which defines the harmony and beauty in the image, is “really in the eye of the beholder”. Even for the same image, different viewers might have various opinions of optimal composition with respect to aesthetic. To accomplish this subjective task, a deep learning framework is designed where the visual fixations of the image is detected based on selected deep representations and an initial visual saliency rectangle is generated to include the interested objects consequently. Afterwards, a cropping rectangle is proposed by mapping the initial visual saliency bounding box to optimal cropping areas through a regression network, where the relationship between interested objects and the optimal composition of the image is discovered. The experimental results on public datasets show that the proposed method has the competitive results than state-of-the-art approaches.
•Learn the relationship between interested objects and optimal cropping window.•Accomplish the image cropping with high efficiency.•Investigate different saliency detection approaches for improving image cropping performance.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.image.2019.05.010</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-5965 |
ispartof | Signal processing. Image communication, 2019-09, Vol.77, p.1-10 |
issn | 0923-5965 1879-2677 |
language | eng |
recordid | cdi_proquest_journals_2256120590 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Composition Deep neural networks Image composition Image detection Image quality Machine learning Mapping Regression Salience |
title | Aesthetic guided deep regression network for image cropping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aesthetic%20guided%20deep%20regression%20network%20for%20image%20cropping&rft.jtitle=Signal%20processing.%20Image%20communication&rft.au=Lu,%20Peng&rft.date=2019-09&rft.volume=77&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0923-5965&rft.eissn=1879-2677&rft_id=info:doi/10.1016/j.image.2019.05.010&rft_dat=%3Cproquest_cross%3E2256120590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256120590&rft_id=info:pmid/&rft_els_id=S0923596518309329&rfr_iscdi=true |