Aesthetic guided deep regression network for image cropping

Cropping an image to improve its aesthetic quality is a challenging problem because aesthetic, which defines the harmony and beauty in the image, is “really in the eye of the beholder”. Even for the same image, different viewers might have various opinions of optimal composition with respect to aest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing. Image communication 2019-09, Vol.77, p.1-10
Hauptverfasser: Lu, Peng, Zhang, Hao, Peng, XuJun, Peng, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Signal processing. Image communication
container_volume 77
creator Lu, Peng
Zhang, Hao
Peng, XuJun
Peng, Xiang
description Cropping an image to improve its aesthetic quality is a challenging problem because aesthetic, which defines the harmony and beauty in the image, is “really in the eye of the beholder”. Even for the same image, different viewers might have various opinions of optimal composition with respect to aesthetic. To accomplish this subjective task, a deep learning framework is designed where the visual fixations of the image is detected based on selected deep representations and an initial visual saliency rectangle is generated to include the interested objects consequently. Afterwards, a cropping rectangle is proposed by mapping the initial visual saliency bounding box to optimal cropping areas through a regression network, where the relationship between interested objects and the optimal composition of the image is discovered. The experimental results on public datasets show that the proposed method has the competitive results than state-of-the-art approaches. •Learn the relationship between interested objects and optimal cropping window.•Accomplish the image cropping with high efficiency.•Investigate different saliency detection approaches for improving image cropping performance.
doi_str_mv 10.1016/j.image.2019.05.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2256120590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0923596518309329</els_id><sourcerecordid>2256120590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-1092eba1a182fc60e9129a92301e43e77c5faf12dfe5877d978884c4f6926ced3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1giMSfcOXEcCzFUFV9SJRaYreCcgwMkwU5A_Hvclpnplnvvee5l7BwhQ8DyssvcR91SxgFVBiIDhAO2wEqqlJdSHrIFKJ6nQpXimJ2E0AEAL0At2NWKwvRKkzNJO7uGmqQhGhNPracQ3NAnPU3fg39L7OCTHSUxfhhH17en7MjW74HO_uaSPd_ePK3v083j3cN6tUlNnuOUYmTTS401VtyaEkghV3X0AaQiJymNsLVF3lgSlZSNklVVFaawpeKloSZfsov93dEPn3P01d0w-z4iNeeiRA5CQdzK91tRLwRPVo8--vofjaC3LelO7_z1tiUNQseWYup6n6L4wJcjr4Nx1Ees82Qm3Qzu3_wvVlFwgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256120590</pqid></control><display><type>article</type><title>Aesthetic guided deep regression network for image cropping</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lu, Peng ; Zhang, Hao ; Peng, XuJun ; Peng, Xiang</creator><creatorcontrib>Lu, Peng ; Zhang, Hao ; Peng, XuJun ; Peng, Xiang</creatorcontrib><description>Cropping an image to improve its aesthetic quality is a challenging problem because aesthetic, which defines the harmony and beauty in the image, is “really in the eye of the beholder”. Even for the same image, different viewers might have various opinions of optimal composition with respect to aesthetic. To accomplish this subjective task, a deep learning framework is designed where the visual fixations of the image is detected based on selected deep representations and an initial visual saliency rectangle is generated to include the interested objects consequently. Afterwards, a cropping rectangle is proposed by mapping the initial visual saliency bounding box to optimal cropping areas through a regression network, where the relationship between interested objects and the optimal composition of the image is discovered. The experimental results on public datasets show that the proposed method has the competitive results than state-of-the-art approaches. •Learn the relationship between interested objects and optimal cropping window.•Accomplish the image cropping with high efficiency.•Investigate different saliency detection approaches for improving image cropping performance.</description><identifier>ISSN: 0923-5965</identifier><identifier>EISSN: 1879-2677</identifier><identifier>DOI: 10.1016/j.image.2019.05.010</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Composition ; Deep neural networks ; Image composition ; Image detection ; Image quality ; Machine learning ; Mapping ; Regression ; Salience</subject><ispartof>Signal processing. Image communication, 2019-09, Vol.77, p.1-10</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-1092eba1a182fc60e9129a92301e43e77c5faf12dfe5877d978884c4f6926ced3</citedby><cites>FETCH-LOGICAL-c331t-1092eba1a182fc60e9129a92301e43e77c5faf12dfe5877d978884c4f6926ced3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0923596518309329$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Lu, Peng</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Peng, XuJun</creatorcontrib><creatorcontrib>Peng, Xiang</creatorcontrib><title>Aesthetic guided deep regression network for image cropping</title><title>Signal processing. Image communication</title><description>Cropping an image to improve its aesthetic quality is a challenging problem because aesthetic, which defines the harmony and beauty in the image, is “really in the eye of the beholder”. Even for the same image, different viewers might have various opinions of optimal composition with respect to aesthetic. To accomplish this subjective task, a deep learning framework is designed where the visual fixations of the image is detected based on selected deep representations and an initial visual saliency rectangle is generated to include the interested objects consequently. Afterwards, a cropping rectangle is proposed by mapping the initial visual saliency bounding box to optimal cropping areas through a regression network, where the relationship between interested objects and the optimal composition of the image is discovered. The experimental results on public datasets show that the proposed method has the competitive results than state-of-the-art approaches. •Learn the relationship between interested objects and optimal cropping window.•Accomplish the image cropping with high efficiency.•Investigate different saliency detection approaches for improving image cropping performance.</description><subject>Composition</subject><subject>Deep neural networks</subject><subject>Image composition</subject><subject>Image detection</subject><subject>Image quality</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Regression</subject><subject>Salience</subject><issn>0923-5965</issn><issn>1879-2677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1giMSfcOXEcCzFUFV9SJRaYreCcgwMkwU5A_Hvclpnplnvvee5l7BwhQ8DyssvcR91SxgFVBiIDhAO2wEqqlJdSHrIFKJ6nQpXimJ2E0AEAL0At2NWKwvRKkzNJO7uGmqQhGhNPracQ3NAnPU3fg39L7OCTHSUxfhhH17en7MjW74HO_uaSPd_ePK3v083j3cN6tUlNnuOUYmTTS401VtyaEkghV3X0AaQiJymNsLVF3lgSlZSNklVVFaawpeKloSZfsov93dEPn3P01d0w-z4iNeeiRA5CQdzK91tRLwRPVo8--vofjaC3LelO7_z1tiUNQseWYup6n6L4wJcjr4Nx1Ees82Qm3Qzu3_wvVlFwgw</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Lu, Peng</creator><creator>Zhang, Hao</creator><creator>Peng, XuJun</creator><creator>Peng, Xiang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201909</creationdate><title>Aesthetic guided deep regression network for image cropping</title><author>Lu, Peng ; Zhang, Hao ; Peng, XuJun ; Peng, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-1092eba1a182fc60e9129a92301e43e77c5faf12dfe5877d978884c4f6926ced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Composition</topic><topic>Deep neural networks</topic><topic>Image composition</topic><topic>Image detection</topic><topic>Image quality</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Regression</topic><topic>Salience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Peng</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Peng, XuJun</creatorcontrib><creatorcontrib>Peng, Xiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing. Image communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Peng</au><au>Zhang, Hao</au><au>Peng, XuJun</au><au>Peng, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aesthetic guided deep regression network for image cropping</atitle><jtitle>Signal processing. Image communication</jtitle><date>2019-09</date><risdate>2019</risdate><volume>77</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0923-5965</issn><eissn>1879-2677</eissn><abstract>Cropping an image to improve its aesthetic quality is a challenging problem because aesthetic, which defines the harmony and beauty in the image, is “really in the eye of the beholder”. Even for the same image, different viewers might have various opinions of optimal composition with respect to aesthetic. To accomplish this subjective task, a deep learning framework is designed where the visual fixations of the image is detected based on selected deep representations and an initial visual saliency rectangle is generated to include the interested objects consequently. Afterwards, a cropping rectangle is proposed by mapping the initial visual saliency bounding box to optimal cropping areas through a regression network, where the relationship between interested objects and the optimal composition of the image is discovered. The experimental results on public datasets show that the proposed method has the competitive results than state-of-the-art approaches. •Learn the relationship between interested objects and optimal cropping window.•Accomplish the image cropping with high efficiency.•Investigate different saliency detection approaches for improving image cropping performance.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.image.2019.05.010</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0923-5965
ispartof Signal processing. Image communication, 2019-09, Vol.77, p.1-10
issn 0923-5965
1879-2677
language eng
recordid cdi_proquest_journals_2256120590
source Elsevier ScienceDirect Journals Complete
subjects Composition
Deep neural networks
Image composition
Image detection
Image quality
Machine learning
Mapping
Regression
Salience
title Aesthetic guided deep regression network for image cropping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aesthetic%20guided%20deep%20regression%20network%20for%20image%20cropping&rft.jtitle=Signal%20processing.%20Image%20communication&rft.au=Lu,%20Peng&rft.date=2019-09&rft.volume=77&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0923-5965&rft.eissn=1879-2677&rft_id=info:doi/10.1016/j.image.2019.05.010&rft_dat=%3Cproquest_cross%3E2256120590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256120590&rft_id=info:pmid/&rft_els_id=S0923596518309329&rfr_iscdi=true