Regularizing Neural Networks for Future Trajectory Prediction via Inverse Reinforcement Learning Framework

Predicting distant future trajectories of agents in a dynamic scene is not an easy problem because the future trajectory of an agent is affected by not only his/her past trajectory but also the scene contexts. To tackle this problem, we propose a model based on recurrent neural networks (RNNs) and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-12
Hauptverfasser: Choi, Dooseop, Kyoungwook Min, Choi, Jeongdan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!