Reducing Hibernation Energy and Degradation in Bipolar ReRAM-Based Non-Volatile Processors
ReRAM-based Non-Volatile Flip-Flops (NVFFs) enable instant hibernation and zero-leakage sleep modes that are highly desired in energy harvesting and frequently-off Non-Volatile Processors (NVPs). However, their high store energy demand and rapid degradation due to excess electrical stress and unnece...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2019, Vol.18, p.657-669 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 669 |
---|---|
container_issue | |
container_start_page | 657 |
container_title | IEEE transactions on nanotechnology |
container_volume | 18 |
creator | Biglari, Mehrdad Lieske, Tobias Fey, Dietmar |
description | ReRAM-based Non-Volatile Flip-Flops (NVFFs) enable instant hibernation and zero-leakage sleep modes that are highly desired in energy harvesting and frequently-off Non-Volatile Processors (NVPs). However, their high store energy demand and rapid degradation due to excess electrical stress and unnecessary writes during store time remain open challenges for the deployment of ReRAM-based NVP. To address these concerns, this paper presents two energy-efficient and low-degradation bipolar ReRAM-based NVFFs, Hypnos, and Morpheus. In Hypnos, we reduce the ReRAM electrical stress during set operation while keeping the introduced area overhead at a minimum. In Morpheus, a write-termination circuit reduces the store energy demand and excess electrical stress even further at the cost of an affordable area overhead. Both NVFFs feature run-time tunable resistive states to enable the online adjustment of their tradeoff among endurance, retention, energy demand, and restore success rate. Experimental results demonstrate the enhanced energy efficiency and endurance properties of the proposed NVFFs. We further develop NVPs based on Hypnos and Morpheus and investigate the performance of the resulting NVPs in terms of effective processing frequency, hibernation energy, and degradation in a case study on battery-less and battery-powered Internet-of-Things (IoT) devices. In particular, we show that Hypnos's stress reduction mechanism reduces the NVP's set degradation by 78 %, whereas Morpheus's write-termination mechanism alleviates the remaining NVP degradation by 66% (set) and 88 % (reset). |
doi_str_mv | 10.1109/TNANO.2019.2922363 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2255899477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8738988</ieee_id><sourcerecordid>2255899477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2f877f1f36e8e9185e658cee0903d2d7d40f6f0d43a237f1bca4f055f1ad6b633</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujiYh-Ab008bzYP9vd9giIYoJgCBrjpSnbKVmybrFdDnx7F5d4msnLe5N5P4RuKRlQStTDaj6cLwaMUDVgijGe8TPUoyqlCSFSnLe74FlCmfi8RFcxbgmheSZkD30twe6Lst7gabmGUJum9DWe1BA2B2xqix9hE4zt5LLGo3LnKxPwEpbD12RkIlg893Xy0apNWQF-C76AGH2I1-jCmSrCzWn20fvTZDWeJrPF88t4OEsKpkSTMCfz3FHHM5CgqBTQPlYAEEW4ZTa3KXGZIzblhvHWuC5M6ogQjhqbrTPO--i-u7sL_mcPsdFbv2-bVFEzJoRUKs3z1sU6VxF8jAGc3oXy24SDpkQfGeo_hvrIUJ8YtqG7LlQCwH9A5lwqKfkvkx5tkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255899477</pqid></control><display><type>article</type><title>Reducing Hibernation Energy and Degradation in Bipolar ReRAM-Based Non-Volatile Processors</title><source>IEEE Electronic Library (IEL)</source><creator>Biglari, Mehrdad ; Lieske, Tobias ; Fey, Dietmar</creator><creatorcontrib>Biglari, Mehrdad ; Lieske, Tobias ; Fey, Dietmar</creatorcontrib><description>ReRAM-based Non-Volatile Flip-Flops (NVFFs) enable instant hibernation and zero-leakage sleep modes that are highly desired in energy harvesting and frequently-off Non-Volatile Processors (NVPs). However, their high store energy demand and rapid degradation due to excess electrical stress and unnecessary writes during store time remain open challenges for the deployment of ReRAM-based NVP. To address these concerns, this paper presents two energy-efficient and low-degradation bipolar ReRAM-based NVFFs, Hypnos, and Morpheus. In Hypnos, we reduce the ReRAM electrical stress during set operation while keeping the introduced area overhead at a minimum. In Morpheus, a write-termination circuit reduces the store energy demand and excess electrical stress even further at the cost of an affordable area overhead. Both NVFFs feature run-time tunable resistive states to enable the online adjustment of their tradeoff among endurance, retention, energy demand, and restore success rate. Experimental results demonstrate the enhanced energy efficiency and endurance properties of the proposed NVFFs. We further develop NVPs based on Hypnos and Morpheus and investigate the performance of the resulting NVPs in terms of effective processing frequency, hibernation energy, and degradation in a case study on battery-less and battery-powered Internet-of-Things (IoT) devices. In particular, we show that Hypnos's stress reduction mechanism reduces the NVP's set degradation by 78 %, whereas Morpheus's write-termination mechanism alleviates the remaining NVP degradation by 66% (set) and 88 % (reset).</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2019.2922363</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Computer architecture ; Degradation ; Demand ; Durability ; Electrical equipment ; Endurance ; Energy efficiency ; Energy harvesting ; Energy storage ; Flip-flops ; Hibernation ; hibernation energy ; Internet of Things ; Latches ; Microprocessors ; Non-volatile flip-flop ; non-volatile processor ; Processors ; Program processors ; Programming ; ReRAM ; Run time (computers) ; Stress</subject><ispartof>IEEE transactions on nanotechnology, 2019, Vol.18, p.657-669</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-2f877f1f36e8e9185e658cee0903d2d7d40f6f0d43a237f1bca4f055f1ad6b633</citedby><cites>FETCH-LOGICAL-c295t-2f877f1f36e8e9185e658cee0903d2d7d40f6f0d43a237f1bca4f055f1ad6b633</cites><orcidid>0000-0001-7384-4261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8738988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4021,27921,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8738988$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Biglari, Mehrdad</creatorcontrib><creatorcontrib>Lieske, Tobias</creatorcontrib><creatorcontrib>Fey, Dietmar</creatorcontrib><title>Reducing Hibernation Energy and Degradation in Bipolar ReRAM-Based Non-Volatile Processors</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>ReRAM-based Non-Volatile Flip-Flops (NVFFs) enable instant hibernation and zero-leakage sleep modes that are highly desired in energy harvesting and frequently-off Non-Volatile Processors (NVPs). However, their high store energy demand and rapid degradation due to excess electrical stress and unnecessary writes during store time remain open challenges for the deployment of ReRAM-based NVP. To address these concerns, this paper presents two energy-efficient and low-degradation bipolar ReRAM-based NVFFs, Hypnos, and Morpheus. In Hypnos, we reduce the ReRAM electrical stress during set operation while keeping the introduced area overhead at a minimum. In Morpheus, a write-termination circuit reduces the store energy demand and excess electrical stress even further at the cost of an affordable area overhead. Both NVFFs feature run-time tunable resistive states to enable the online adjustment of their tradeoff among endurance, retention, energy demand, and restore success rate. Experimental results demonstrate the enhanced energy efficiency and endurance properties of the proposed NVFFs. We further develop NVPs based on Hypnos and Morpheus and investigate the performance of the resulting NVPs in terms of effective processing frequency, hibernation energy, and degradation in a case study on battery-less and battery-powered Internet-of-Things (IoT) devices. In particular, we show that Hypnos's stress reduction mechanism reduces the NVP's set degradation by 78 %, whereas Morpheus's write-termination mechanism alleviates the remaining NVP degradation by 66% (set) and 88 % (reset).</description><subject>Batteries</subject><subject>Computer architecture</subject><subject>Degradation</subject><subject>Demand</subject><subject>Durability</subject><subject>Electrical equipment</subject><subject>Endurance</subject><subject>Energy efficiency</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Flip-flops</subject><subject>Hibernation</subject><subject>hibernation energy</subject><subject>Internet of Things</subject><subject>Latches</subject><subject>Microprocessors</subject><subject>Non-volatile flip-flop</subject><subject>non-volatile processor</subject><subject>Processors</subject><subject>Program processors</subject><subject>Programming</subject><subject>ReRAM</subject><subject>Run time (computers)</subject><subject>Stress</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxRujiYh-Ab008bzYP9vd9giIYoJgCBrjpSnbKVmybrFdDnx7F5d4msnLe5N5P4RuKRlQStTDaj6cLwaMUDVgijGe8TPUoyqlCSFSnLe74FlCmfi8RFcxbgmheSZkD30twe6Lst7gabmGUJum9DWe1BA2B2xqix9hE4zt5LLGo3LnKxPwEpbD12RkIlg893Xy0apNWQF-C76AGH2I1-jCmSrCzWn20fvTZDWeJrPF88t4OEsKpkSTMCfz3FHHM5CgqBTQPlYAEEW4ZTa3KXGZIzblhvHWuC5M6ogQjhqbrTPO--i-u7sL_mcPsdFbv2-bVFEzJoRUKs3z1sU6VxF8jAGc3oXy24SDpkQfGeo_hvrIUJ8YtqG7LlQCwH9A5lwqKfkvkx5tkA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Biglari, Mehrdad</creator><creator>Lieske, Tobias</creator><creator>Fey, Dietmar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7384-4261</orcidid></search><sort><creationdate>2019</creationdate><title>Reducing Hibernation Energy and Degradation in Bipolar ReRAM-Based Non-Volatile Processors</title><author>Biglari, Mehrdad ; Lieske, Tobias ; Fey, Dietmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2f877f1f36e8e9185e658cee0903d2d7d40f6f0d43a237f1bca4f055f1ad6b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Computer architecture</topic><topic>Degradation</topic><topic>Demand</topic><topic>Durability</topic><topic>Electrical equipment</topic><topic>Endurance</topic><topic>Energy efficiency</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Flip-flops</topic><topic>Hibernation</topic><topic>hibernation energy</topic><topic>Internet of Things</topic><topic>Latches</topic><topic>Microprocessors</topic><topic>Non-volatile flip-flop</topic><topic>non-volatile processor</topic><topic>Processors</topic><topic>Program processors</topic><topic>Programming</topic><topic>ReRAM</topic><topic>Run time (computers)</topic><topic>Stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biglari, Mehrdad</creatorcontrib><creatorcontrib>Lieske, Tobias</creatorcontrib><creatorcontrib>Fey, Dietmar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Biglari, Mehrdad</au><au>Lieske, Tobias</au><au>Fey, Dietmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing Hibernation Energy and Degradation in Bipolar ReRAM-Based Non-Volatile Processors</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2019</date><risdate>2019</risdate><volume>18</volume><spage>657</spage><epage>669</epage><pages>657-669</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>ReRAM-based Non-Volatile Flip-Flops (NVFFs) enable instant hibernation and zero-leakage sleep modes that are highly desired in energy harvesting and frequently-off Non-Volatile Processors (NVPs). However, their high store energy demand and rapid degradation due to excess electrical stress and unnecessary writes during store time remain open challenges for the deployment of ReRAM-based NVP. To address these concerns, this paper presents two energy-efficient and low-degradation bipolar ReRAM-based NVFFs, Hypnos, and Morpheus. In Hypnos, we reduce the ReRAM electrical stress during set operation while keeping the introduced area overhead at a minimum. In Morpheus, a write-termination circuit reduces the store energy demand and excess electrical stress even further at the cost of an affordable area overhead. Both NVFFs feature run-time tunable resistive states to enable the online adjustment of their tradeoff among endurance, retention, energy demand, and restore success rate. Experimental results demonstrate the enhanced energy efficiency and endurance properties of the proposed NVFFs. We further develop NVPs based on Hypnos and Morpheus and investigate the performance of the resulting NVPs in terms of effective processing frequency, hibernation energy, and degradation in a case study on battery-less and battery-powered Internet-of-Things (IoT) devices. In particular, we show that Hypnos's stress reduction mechanism reduces the NVP's set degradation by 78 %, whereas Morpheus's write-termination mechanism alleviates the remaining NVP degradation by 66% (set) and 88 % (reset).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2019.2922363</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7384-4261</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2019, Vol.18, p.657-669 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_proquest_journals_2255899477 |
source | IEEE Electronic Library (IEL) |
subjects | Batteries Computer architecture Degradation Demand Durability Electrical equipment Endurance Energy efficiency Energy harvesting Energy storage Flip-flops Hibernation hibernation energy Internet of Things Latches Microprocessors Non-volatile flip-flop non-volatile processor Processors Program processors Programming ReRAM Run time (computers) Stress |
title | Reducing Hibernation Energy and Degradation in Bipolar ReRAM-Based Non-Volatile Processors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20Hibernation%20Energy%20and%20Degradation%20in%20Bipolar%20ReRAM-Based%20Non-Volatile%20Processors&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Biglari,%20Mehrdad&rft.date=2019&rft.volume=18&rft.spage=657&rft.epage=669&rft.pages=657-669&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2019.2922363&rft_dat=%3Cproquest_RIE%3E2255899477%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2255899477&rft_id=info:pmid/&rft_ieee_id=8738988&rfr_iscdi=true |