Reducing Hibernation Energy and Degradation in Bipolar ReRAM-Based Non-Volatile Processors

ReRAM-based Non-Volatile Flip-Flops (NVFFs) enable instant hibernation and zero-leakage sleep modes that are highly desired in energy harvesting and frequently-off Non-Volatile Processors (NVPs). However, their high store energy demand and rapid degradation due to excess electrical stress and unnece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2019, Vol.18, p.657-669
Hauptverfasser: Biglari, Mehrdad, Lieske, Tobias, Fey, Dietmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669
container_issue
container_start_page 657
container_title IEEE transactions on nanotechnology
container_volume 18
creator Biglari, Mehrdad
Lieske, Tobias
Fey, Dietmar
description ReRAM-based Non-Volatile Flip-Flops (NVFFs) enable instant hibernation and zero-leakage sleep modes that are highly desired in energy harvesting and frequently-off Non-Volatile Processors (NVPs). However, their high store energy demand and rapid degradation due to excess electrical stress and unnecessary writes during store time remain open challenges for the deployment of ReRAM-based NVP. To address these concerns, this paper presents two energy-efficient and low-degradation bipolar ReRAM-based NVFFs, Hypnos, and Morpheus. In Hypnos, we reduce the ReRAM electrical stress during set operation while keeping the introduced area overhead at a minimum. In Morpheus, a write-termination circuit reduces the store energy demand and excess electrical stress even further at the cost of an affordable area overhead. Both NVFFs feature run-time tunable resistive states to enable the online adjustment of their tradeoff among endurance, retention, energy demand, and restore success rate. Experimental results demonstrate the enhanced energy efficiency and endurance properties of the proposed NVFFs. We further develop NVPs based on Hypnos and Morpheus and investigate the performance of the resulting NVPs in terms of effective processing frequency, hibernation energy, and degradation in a case study on battery-less and battery-powered Internet-of-Things (IoT) devices. In particular, we show that Hypnos's stress reduction mechanism reduces the NVP's set degradation by 78 %, whereas Morpheus's write-termination mechanism alleviates the remaining NVP degradation by 66% (set) and 88 % (reset).
doi_str_mv 10.1109/TNANO.2019.2922363
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2255899477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8738988</ieee_id><sourcerecordid>2255899477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2f877f1f36e8e9185e658cee0903d2d7d40f6f0d43a237f1bca4f055f1ad6b633</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujiYh-Ab008bzYP9vd9giIYoJgCBrjpSnbKVmybrFdDnx7F5d4msnLe5N5P4RuKRlQStTDaj6cLwaMUDVgijGe8TPUoyqlCSFSnLe74FlCmfi8RFcxbgmheSZkD30twe6Lst7gabmGUJum9DWe1BA2B2xqix9hE4zt5LLGo3LnKxPwEpbD12RkIlg893Xy0apNWQF-C76AGH2I1-jCmSrCzWn20fvTZDWeJrPF88t4OEsKpkSTMCfz3FHHM5CgqBTQPlYAEEW4ZTa3KXGZIzblhvHWuC5M6ogQjhqbrTPO--i-u7sL_mcPsdFbv2-bVFEzJoRUKs3z1sU6VxF8jAGc3oXy24SDpkQfGeo_hvrIUJ8YtqG7LlQCwH9A5lwqKfkvkx5tkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255899477</pqid></control><display><type>article</type><title>Reducing Hibernation Energy and Degradation in Bipolar ReRAM-Based Non-Volatile Processors</title><source>IEEE Electronic Library (IEL)</source><creator>Biglari, Mehrdad ; Lieske, Tobias ; Fey, Dietmar</creator><creatorcontrib>Biglari, Mehrdad ; Lieske, Tobias ; Fey, Dietmar</creatorcontrib><description>ReRAM-based Non-Volatile Flip-Flops (NVFFs) enable instant hibernation and zero-leakage sleep modes that are highly desired in energy harvesting and frequently-off Non-Volatile Processors (NVPs). However, their high store energy demand and rapid degradation due to excess electrical stress and unnecessary writes during store time remain open challenges for the deployment of ReRAM-based NVP. To address these concerns, this paper presents two energy-efficient and low-degradation bipolar ReRAM-based NVFFs, Hypnos, and Morpheus. In Hypnos, we reduce the ReRAM electrical stress during set operation while keeping the introduced area overhead at a minimum. In Morpheus, a write-termination circuit reduces the store energy demand and excess electrical stress even further at the cost of an affordable area overhead. Both NVFFs feature run-time tunable resistive states to enable the online adjustment of their tradeoff among endurance, retention, energy demand, and restore success rate. Experimental results demonstrate the enhanced energy efficiency and endurance properties of the proposed NVFFs. We further develop NVPs based on Hypnos and Morpheus and investigate the performance of the resulting NVPs in terms of effective processing frequency, hibernation energy, and degradation in a case study on battery-less and battery-powered Internet-of-Things (IoT) devices. In particular, we show that Hypnos's stress reduction mechanism reduces the NVP's set degradation by 78 %, whereas Morpheus's write-termination mechanism alleviates the remaining NVP degradation by 66% (set) and 88 % (reset).</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2019.2922363</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Computer architecture ; Degradation ; Demand ; Durability ; Electrical equipment ; Endurance ; Energy efficiency ; Energy harvesting ; Energy storage ; Flip-flops ; Hibernation ; hibernation energy ; Internet of Things ; Latches ; Microprocessors ; Non-volatile flip-flop ; non-volatile processor ; Processors ; Program processors ; Programming ; ReRAM ; Run time (computers) ; Stress</subject><ispartof>IEEE transactions on nanotechnology, 2019, Vol.18, p.657-669</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-2f877f1f36e8e9185e658cee0903d2d7d40f6f0d43a237f1bca4f055f1ad6b633</citedby><cites>FETCH-LOGICAL-c295t-2f877f1f36e8e9185e658cee0903d2d7d40f6f0d43a237f1bca4f055f1ad6b633</cites><orcidid>0000-0001-7384-4261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8738988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4021,27921,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8738988$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Biglari, Mehrdad</creatorcontrib><creatorcontrib>Lieske, Tobias</creatorcontrib><creatorcontrib>Fey, Dietmar</creatorcontrib><title>Reducing Hibernation Energy and Degradation in Bipolar ReRAM-Based Non-Volatile Processors</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>ReRAM-based Non-Volatile Flip-Flops (NVFFs) enable instant hibernation and zero-leakage sleep modes that are highly desired in energy harvesting and frequently-off Non-Volatile Processors (NVPs). However, their high store energy demand and rapid degradation due to excess electrical stress and unnecessary writes during store time remain open challenges for the deployment of ReRAM-based NVP. To address these concerns, this paper presents two energy-efficient and low-degradation bipolar ReRAM-based NVFFs, Hypnos, and Morpheus. In Hypnos, we reduce the ReRAM electrical stress during set operation while keeping the introduced area overhead at a minimum. In Morpheus, a write-termination circuit reduces the store energy demand and excess electrical stress even further at the cost of an affordable area overhead. Both NVFFs feature run-time tunable resistive states to enable the online adjustment of their tradeoff among endurance, retention, energy demand, and restore success rate. Experimental results demonstrate the enhanced energy efficiency and endurance properties of the proposed NVFFs. We further develop NVPs based on Hypnos and Morpheus and investigate the performance of the resulting NVPs in terms of effective processing frequency, hibernation energy, and degradation in a case study on battery-less and battery-powered Internet-of-Things (IoT) devices. In particular, we show that Hypnos's stress reduction mechanism reduces the NVP's set degradation by 78 %, whereas Morpheus's write-termination mechanism alleviates the remaining NVP degradation by 66% (set) and 88 % (reset).</description><subject>Batteries</subject><subject>Computer architecture</subject><subject>Degradation</subject><subject>Demand</subject><subject>Durability</subject><subject>Electrical equipment</subject><subject>Endurance</subject><subject>Energy efficiency</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Flip-flops</subject><subject>Hibernation</subject><subject>hibernation energy</subject><subject>Internet of Things</subject><subject>Latches</subject><subject>Microprocessors</subject><subject>Non-volatile flip-flop</subject><subject>non-volatile processor</subject><subject>Processors</subject><subject>Program processors</subject><subject>Programming</subject><subject>ReRAM</subject><subject>Run time (computers)</subject><subject>Stress</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxRujiYh-Ab008bzYP9vd9giIYoJgCBrjpSnbKVmybrFdDnx7F5d4msnLe5N5P4RuKRlQStTDaj6cLwaMUDVgijGe8TPUoyqlCSFSnLe74FlCmfi8RFcxbgmheSZkD30twe6Lst7gabmGUJum9DWe1BA2B2xqix9hE4zt5LLGo3LnKxPwEpbD12RkIlg893Xy0apNWQF-C76AGH2I1-jCmSrCzWn20fvTZDWeJrPF88t4OEsKpkSTMCfz3FHHM5CgqBTQPlYAEEW4ZTa3KXGZIzblhvHWuC5M6ogQjhqbrTPO--i-u7sL_mcPsdFbv2-bVFEzJoRUKs3z1sU6VxF8jAGc3oXy24SDpkQfGeo_hvrIUJ8YtqG7LlQCwH9A5lwqKfkvkx5tkA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Biglari, Mehrdad</creator><creator>Lieske, Tobias</creator><creator>Fey, Dietmar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7384-4261</orcidid></search><sort><creationdate>2019</creationdate><title>Reducing Hibernation Energy and Degradation in Bipolar ReRAM-Based Non-Volatile Processors</title><author>Biglari, Mehrdad ; Lieske, Tobias ; Fey, Dietmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2f877f1f36e8e9185e658cee0903d2d7d40f6f0d43a237f1bca4f055f1ad6b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Computer architecture</topic><topic>Degradation</topic><topic>Demand</topic><topic>Durability</topic><topic>Electrical equipment</topic><topic>Endurance</topic><topic>Energy efficiency</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Flip-flops</topic><topic>Hibernation</topic><topic>hibernation energy</topic><topic>Internet of Things</topic><topic>Latches</topic><topic>Microprocessors</topic><topic>Non-volatile flip-flop</topic><topic>non-volatile processor</topic><topic>Processors</topic><topic>Program processors</topic><topic>Programming</topic><topic>ReRAM</topic><topic>Run time (computers)</topic><topic>Stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biglari, Mehrdad</creatorcontrib><creatorcontrib>Lieske, Tobias</creatorcontrib><creatorcontrib>Fey, Dietmar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Biglari, Mehrdad</au><au>Lieske, Tobias</au><au>Fey, Dietmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing Hibernation Energy and Degradation in Bipolar ReRAM-Based Non-Volatile Processors</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2019</date><risdate>2019</risdate><volume>18</volume><spage>657</spage><epage>669</epage><pages>657-669</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>ReRAM-based Non-Volatile Flip-Flops (NVFFs) enable instant hibernation and zero-leakage sleep modes that are highly desired in energy harvesting and frequently-off Non-Volatile Processors (NVPs). However, their high store energy demand and rapid degradation due to excess electrical stress and unnecessary writes during store time remain open challenges for the deployment of ReRAM-based NVP. To address these concerns, this paper presents two energy-efficient and low-degradation bipolar ReRAM-based NVFFs, Hypnos, and Morpheus. In Hypnos, we reduce the ReRAM electrical stress during set operation while keeping the introduced area overhead at a minimum. In Morpheus, a write-termination circuit reduces the store energy demand and excess electrical stress even further at the cost of an affordable area overhead. Both NVFFs feature run-time tunable resistive states to enable the online adjustment of their tradeoff among endurance, retention, energy demand, and restore success rate. Experimental results demonstrate the enhanced energy efficiency and endurance properties of the proposed NVFFs. We further develop NVPs based on Hypnos and Morpheus and investigate the performance of the resulting NVPs in terms of effective processing frequency, hibernation energy, and degradation in a case study on battery-less and battery-powered Internet-of-Things (IoT) devices. In particular, we show that Hypnos's stress reduction mechanism reduces the NVP's set degradation by 78 %, whereas Morpheus's write-termination mechanism alleviates the remaining NVP degradation by 66% (set) and 88 % (reset).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2019.2922363</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7384-4261</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2019, Vol.18, p.657-669
issn 1536-125X
1941-0085
language eng
recordid cdi_proquest_journals_2255899477
source IEEE Electronic Library (IEL)
subjects Batteries
Computer architecture
Degradation
Demand
Durability
Electrical equipment
Endurance
Energy efficiency
Energy harvesting
Energy storage
Flip-flops
Hibernation
hibernation energy
Internet of Things
Latches
Microprocessors
Non-volatile flip-flop
non-volatile processor
Processors
Program processors
Programming
ReRAM
Run time (computers)
Stress
title Reducing Hibernation Energy and Degradation in Bipolar ReRAM-Based Non-Volatile Processors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20Hibernation%20Energy%20and%20Degradation%20in%20Bipolar%20ReRAM-Based%20Non-Volatile%20Processors&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Biglari,%20Mehrdad&rft.date=2019&rft.volume=18&rft.spage=657&rft.epage=669&rft.pages=657-669&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2019.2922363&rft_dat=%3Cproquest_RIE%3E2255899477%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2255899477&rft_id=info:pmid/&rft_ieee_id=8738988&rfr_iscdi=true