Highly sensitive and selective Love mode surface acoustic wave ammonia sensor based on graphene oxides operated at room temperature
It is crucial to develop highly sensitive and selective sensors for ammonia, one of the most common toxic gases which have been widely used in pharmaceutical, chemical, and manufacturing industries. In this study, graphene oxide (GO) film was spin-coated onto surfaces of ST-cut quartz surface acoust...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2019-09, Vol.54 (18), p.11925-11935 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11935 |
---|---|
container_issue | 18 |
container_start_page | 11925 |
container_title | Journal of materials science |
container_volume | 54 |
creator | Tang, Q. B. Guo, Y. J. Tang, Y. L. Long, G. D. Wang, J. L. Li, D. J. Zu, X. T. Ma, J. Y. Wang, L. Torun, H. Fu, Y. Q. |
description | It is crucial to develop highly sensitive and selective sensors for ammonia, one of the most common toxic gases which have been widely used in pharmaceutical, chemical, and manufacturing industries. In this study, graphene oxide (GO) film was spin-coated onto surfaces of ST-cut quartz surface acoustic wave (SAW) devices with a resonant frequency of 200 MHz for ammonia sensing. The oxygen-containing functional groups (such as hydroxyl and epoxy ones) on the surface of GO film strongly absorb ammonia molecules and thus increase the film stiffness. This is attributed to the main ammonia sensing mechanism of the Love mode SAW devices, which show not only a positive frequency shift of 620 Hz for 500 ppb ammonia gas, but also an excellent selectivity (as compared to other gases such as H
2
, H
2
S, CO, and NO
2
) and a good reproducibility, operated at room temperature of 22 °C. |
doi_str_mv | 10.1007/s10853-019-03764-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2255738594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A590911248</galeid><sourcerecordid>A590911248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-a1d15fadd8f7b3f6c5365a6d10b47764613cdc4c4d28789c80dab79e219b7e073</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVoodtt_kBPgpx6cKpPyz6G0DaBhULbnIUsjR2FtbSV5DY5949Xuy6UXIJAYmaeV6PRi9B7Si4pIepjpqSTvCG0bwhXrWjaM7ShUvFGdIS_QhtCGGuYaOkb9DbnB0KIVIxu0J8bP93vn3CGkH3xvwCb4Gq0B3uKdrFuc3SA85JGY2vdxiUXb_Fvc6TnOQZvTvqY8GAyOBwDnpI53EMAHB-9g4zjAZIptWYKTjHOuMB8Si0J3qHXo9lnOP93btHd508_rm-a3dcvt9dXu8bWQUpjqKNyNM51oxr42FrJW2laR8kgVJ25pdw6K6xwrFNdbzvizKB6YLQfFBDFt-hivfeQ4s8FctEPcUmhttSMydqjk714mRLq-HO10xZdrtRk9qB9GGNJxtblYPY2Bhh9zV_JnvSUMtFVwYdngsoUeCyTWXLWt9-_PWfZytoUc04w6kPys0lPmhJ99Fuvfuvqtz75rdsq4qsoVzhMkP6_-wXVX48trgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255738594</pqid></control><display><type>article</type><title>Highly sensitive and selective Love mode surface acoustic wave ammonia sensor based on graphene oxides operated at room temperature</title><source>SpringerLink Journals</source><creator>Tang, Q. B. ; Guo, Y. J. ; Tang, Y. L. ; Long, G. D. ; Wang, J. L. ; Li, D. J. ; Zu, X. T. ; Ma, J. Y. ; Wang, L. ; Torun, H. ; Fu, Y. Q.</creator><creatorcontrib>Tang, Q. B. ; Guo, Y. J. ; Tang, Y. L. ; Long, G. D. ; Wang, J. L. ; Li, D. J. ; Zu, X. T. ; Ma, J. Y. ; Wang, L. ; Torun, H. ; Fu, Y. Q.</creatorcontrib><description>It is crucial to develop highly sensitive and selective sensors for ammonia, one of the most common toxic gases which have been widely used in pharmaceutical, chemical, and manufacturing industries. In this study, graphene oxide (GO) film was spin-coated onto surfaces of ST-cut quartz surface acoustic wave (SAW) devices with a resonant frequency of 200 MHz for ammonia sensing. The oxygen-containing functional groups (such as hydroxyl and epoxy ones) on the surface of GO film strongly absorb ammonia molecules and thus increase the film stiffness. This is attributed to the main ammonia sensing mechanism of the Love mode SAW devices, which show not only a positive frequency shift of 620 Hz for 500 ppb ammonia gas, but also an excellent selectivity (as compared to other gases such as H
2
, H
2
S, CO, and NO
2
) and a good reproducibility, operated at room temperature of 22 °C.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03764-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ammonia ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Electronic Materials ; Epoxy resins ; Frequency shift ; Functional groups ; Graphene ; Graphite ; Hydrogen sulfide ; Hydroxides ; Manufacturing industry ; Materials Science ; Nitrogen dioxide ; Organic chemistry ; Polymer Sciences ; Resonant frequencies ; Room temperature ; Selectivity ; Sensors ; Solid Mechanics ; Spin coating ; Stiffness ; Surface acoustic wave devices ; Surface acoustic waves</subject><ispartof>Journal of materials science, 2019-09, Vol.54 (18), p.11925-11935</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Journal of Materials Science is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-a1d15fadd8f7b3f6c5365a6d10b47764613cdc4c4d28789c80dab79e219b7e073</citedby><cites>FETCH-LOGICAL-c573t-a1d15fadd8f7b3f6c5365a6d10b47764613cdc4c4d28789c80dab79e219b7e073</cites><orcidid>0000-0002-7748-6809 ; 0000-0001-5665-5100 ; 0000-0002-3802-1443 ; 0000-0002-1444-0838 ; 0000-0002-1131-9370 ; 0000-0003-4050-8725 ; 0000-0002-7882-286X ; 0000-0001-5626-4572 ; 0000-0001-9797-4036 ; 0000-0002-2993-4734 ; 0000-0002-2404-5110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03764-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03764-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tang, Q. B.</creatorcontrib><creatorcontrib>Guo, Y. J.</creatorcontrib><creatorcontrib>Tang, Y. L.</creatorcontrib><creatorcontrib>Long, G. D.</creatorcontrib><creatorcontrib>Wang, J. L.</creatorcontrib><creatorcontrib>Li, D. J.</creatorcontrib><creatorcontrib>Zu, X. T.</creatorcontrib><creatorcontrib>Ma, J. Y.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Torun, H.</creatorcontrib><creatorcontrib>Fu, Y. Q.</creatorcontrib><title>Highly sensitive and selective Love mode surface acoustic wave ammonia sensor based on graphene oxides operated at room temperature</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>It is crucial to develop highly sensitive and selective sensors for ammonia, one of the most common toxic gases which have been widely used in pharmaceutical, chemical, and manufacturing industries. In this study, graphene oxide (GO) film was spin-coated onto surfaces of ST-cut quartz surface acoustic wave (SAW) devices with a resonant frequency of 200 MHz for ammonia sensing. The oxygen-containing functional groups (such as hydroxyl and epoxy ones) on the surface of GO film strongly absorb ammonia molecules and thus increase the film stiffness. This is attributed to the main ammonia sensing mechanism of the Love mode SAW devices, which show not only a positive frequency shift of 620 Hz for 500 ppb ammonia gas, but also an excellent selectivity (as compared to other gases such as H
2
, H
2
S, CO, and NO
2
) and a good reproducibility, operated at room temperature of 22 °C.</description><subject>Ammonia</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Electronic Materials</subject><subject>Epoxy resins</subject><subject>Frequency shift</subject><subject>Functional groups</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Hydrogen sulfide</subject><subject>Hydroxides</subject><subject>Manufacturing industry</subject><subject>Materials Science</subject><subject>Nitrogen dioxide</subject><subject>Organic chemistry</subject><subject>Polymer Sciences</subject><subject>Resonant frequencies</subject><subject>Room temperature</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Solid Mechanics</subject><subject>Spin coating</subject><subject>Stiffness</subject><subject>Surface acoustic wave devices</subject><subject>Surface acoustic waves</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1r3DAQhkVoodtt_kBPgpx6cKpPyz6G0DaBhULbnIUsjR2FtbSV5DY5949Xuy6UXIJAYmaeV6PRi9B7Si4pIepjpqSTvCG0bwhXrWjaM7ShUvFGdIS_QhtCGGuYaOkb9DbnB0KIVIxu0J8bP93vn3CGkH3xvwCb4Gq0B3uKdrFuc3SA85JGY2vdxiUXb_Fvc6TnOQZvTvqY8GAyOBwDnpI53EMAHB-9g4zjAZIptWYKTjHOuMB8Si0J3qHXo9lnOP93btHd508_rm-a3dcvt9dXu8bWQUpjqKNyNM51oxr42FrJW2laR8kgVJ25pdw6K6xwrFNdbzvizKB6YLQfFBDFt-hivfeQ4s8FctEPcUmhttSMydqjk714mRLq-HO10xZdrtRk9qB9GGNJxtblYPY2Bhh9zV_JnvSUMtFVwYdngsoUeCyTWXLWt9-_PWfZytoUc04w6kPys0lPmhJ99Fuvfuvqtz75rdsq4qsoVzhMkP6_-wXVX48trgA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Tang, Q. B.</creator><creator>Guo, Y. J.</creator><creator>Tang, Y. L.</creator><creator>Long, G. D.</creator><creator>Wang, J. L.</creator><creator>Li, D. J.</creator><creator>Zu, X. T.</creator><creator>Ma, J. Y.</creator><creator>Wang, L.</creator><creator>Torun, H.</creator><creator>Fu, Y. Q.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7748-6809</orcidid><orcidid>https://orcid.org/0000-0001-5665-5100</orcidid><orcidid>https://orcid.org/0000-0002-3802-1443</orcidid><orcidid>https://orcid.org/0000-0002-1444-0838</orcidid><orcidid>https://orcid.org/0000-0002-1131-9370</orcidid><orcidid>https://orcid.org/0000-0003-4050-8725</orcidid><orcidid>https://orcid.org/0000-0002-7882-286X</orcidid><orcidid>https://orcid.org/0000-0001-5626-4572</orcidid><orcidid>https://orcid.org/0000-0001-9797-4036</orcidid><orcidid>https://orcid.org/0000-0002-2993-4734</orcidid><orcidid>https://orcid.org/0000-0002-2404-5110</orcidid></search><sort><creationdate>20190901</creationdate><title>Highly sensitive and selective Love mode surface acoustic wave ammonia sensor based on graphene oxides operated at room temperature</title><author>Tang, Q. B. ; Guo, Y. J. ; Tang, Y. L. ; Long, G. D. ; Wang, J. L. ; Li, D. J. ; Zu, X. T. ; Ma, J. Y. ; Wang, L. ; Torun, H. ; Fu, Y. Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-a1d15fadd8f7b3f6c5365a6d10b47764613cdc4c4d28789c80dab79e219b7e073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonia</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Electronic Materials</topic><topic>Epoxy resins</topic><topic>Frequency shift</topic><topic>Functional groups</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Hydrogen sulfide</topic><topic>Hydroxides</topic><topic>Manufacturing industry</topic><topic>Materials Science</topic><topic>Nitrogen dioxide</topic><topic>Organic chemistry</topic><topic>Polymer Sciences</topic><topic>Resonant frequencies</topic><topic>Room temperature</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Solid Mechanics</topic><topic>Spin coating</topic><topic>Stiffness</topic><topic>Surface acoustic wave devices</topic><topic>Surface acoustic waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Q. B.</creatorcontrib><creatorcontrib>Guo, Y. J.</creatorcontrib><creatorcontrib>Tang, Y. L.</creatorcontrib><creatorcontrib>Long, G. D.</creatorcontrib><creatorcontrib>Wang, J. L.</creatorcontrib><creatorcontrib>Li, D. J.</creatorcontrib><creatorcontrib>Zu, X. T.</creatorcontrib><creatorcontrib>Ma, J. Y.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Torun, H.</creatorcontrib><creatorcontrib>Fu, Y. Q.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Q. B.</au><au>Guo, Y. J.</au><au>Tang, Y. L.</au><au>Long, G. D.</au><au>Wang, J. L.</au><au>Li, D. J.</au><au>Zu, X. T.</au><au>Ma, J. Y.</au><au>Wang, L.</au><au>Torun, H.</au><au>Fu, Y. Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly sensitive and selective Love mode surface acoustic wave ammonia sensor based on graphene oxides operated at room temperature</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>54</volume><issue>18</issue><spage>11925</spage><epage>11935</epage><pages>11925-11935</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>It is crucial to develop highly sensitive and selective sensors for ammonia, one of the most common toxic gases which have been widely used in pharmaceutical, chemical, and manufacturing industries. In this study, graphene oxide (GO) film was spin-coated onto surfaces of ST-cut quartz surface acoustic wave (SAW) devices with a resonant frequency of 200 MHz for ammonia sensing. The oxygen-containing functional groups (such as hydroxyl and epoxy ones) on the surface of GO film strongly absorb ammonia molecules and thus increase the film stiffness. This is attributed to the main ammonia sensing mechanism of the Love mode SAW devices, which show not only a positive frequency shift of 620 Hz for 500 ppb ammonia gas, but also an excellent selectivity (as compared to other gases such as H
2
, H
2
S, CO, and NO
2
) and a good reproducibility, operated at room temperature of 22 °C.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03764-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7748-6809</orcidid><orcidid>https://orcid.org/0000-0001-5665-5100</orcidid><orcidid>https://orcid.org/0000-0002-3802-1443</orcidid><orcidid>https://orcid.org/0000-0002-1444-0838</orcidid><orcidid>https://orcid.org/0000-0002-1131-9370</orcidid><orcidid>https://orcid.org/0000-0003-4050-8725</orcidid><orcidid>https://orcid.org/0000-0002-7882-286X</orcidid><orcidid>https://orcid.org/0000-0001-5626-4572</orcidid><orcidid>https://orcid.org/0000-0001-9797-4036</orcidid><orcidid>https://orcid.org/0000-0002-2993-4734</orcidid><orcidid>https://orcid.org/0000-0002-2404-5110</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2019-09, Vol.54 (18), p.11925-11935 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2255738594 |
source | SpringerLink Journals |
subjects | Ammonia Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Electronic Materials Epoxy resins Frequency shift Functional groups Graphene Graphite Hydrogen sulfide Hydroxides Manufacturing industry Materials Science Nitrogen dioxide Organic chemistry Polymer Sciences Resonant frequencies Room temperature Selectivity Sensors Solid Mechanics Spin coating Stiffness Surface acoustic wave devices Surface acoustic waves |
title | Highly sensitive and selective Love mode surface acoustic wave ammonia sensor based on graphene oxides operated at room temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A17%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20sensitive%20and%20selective%20Love%20mode%20surface%20acoustic%20wave%20ammonia%20sensor%20based%20on%20graphene%20oxides%20operated%20at%20room%20temperature&rft.jtitle=Journal%20of%20materials%20science&rft.au=Tang,%20Q.%20B.&rft.date=2019-09-01&rft.volume=54&rft.issue=18&rft.spage=11925&rft.epage=11935&rft.pages=11925-11935&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03764-6&rft_dat=%3Cgale_proqu%3EA590911248%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2255738594&rft_id=info:pmid/&rft_galeid=A590911248&rfr_iscdi=true |