First-principles study of the melting temperature of MgO

Using first principles only, we calculate the melting point of MgO, also called periclase or magnesia. The random phase approximation (RPA) is used to include the exact exchange as well as local and nonlocal many-body correlation terms, in order to provide high accuracy. Using the free energy method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-05, Vol.99 (18), p.184103, Article 184103
Hauptverfasser: Rang, Max, Kresse, Georg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 184103
container_title Physical review. B
container_volume 99
creator Rang, Max
Kresse, Georg
description Using first principles only, we calculate the melting point of MgO, also called periclase or magnesia. The random phase approximation (RPA) is used to include the exact exchange as well as local and nonlocal many-body correlation terms, in order to provide high accuracy. Using the free energy method, we obtain the melting temperature directly from the internal energies calculated with DFT. The free energy differences between the ensembles generated by the molecular dynamics simulations are calculated with thermodynamic integration or thermodynamic perturbation theory. The predicted melting temperature is TmRPA=3043±86K and the values obtained with the PBE and SCAN functionals are TmPBE=2747±59K and TmSCAN=3032±53K.
doi_str_mv 10.1103/PhysRevB.99.184103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2255663650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2255663650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9e4ccf3960dfb3269cde4c39fc73ecc5778dd1df0471344c83810e775b8203803</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWGq_gKcFz1snm90kc9RirVCpiJ5Dm520W7p_TLJCv71bqp5mePN4w_sxdsthyjmI-7fdMbzT9-MUccp1PkgXbJTlElNEiZf_ewHXbBLCHgC4BFSAI6bnlQ8x7XzV2Ko7UEhC7Mtj0rok7iip6RCrZptEqjvy69h7Op1et6sbduXWh0CT3zlmn_Onj9kiXa6eX2YPy9QKjjFFyq11AiWUbiMyibYcFIHOKkHWFkrpsuSlg1xxkedWC82BlCo2OgOhQYzZ3Tm38-1XTyGafdv7ZnhpsqwopBSyOLmys8v6NgRPzgyN6rU_Gg7mBMn8QTKI5gxJ_AAC0VsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255663650</pqid></control><display><type>article</type><title>First-principles study of the melting temperature of MgO</title><source>American Physical Society Journals</source><creator>Rang, Max ; Kresse, Georg</creator><creatorcontrib>Rang, Max ; Kresse, Georg</creatorcontrib><description>Using first principles only, we calculate the melting point of MgO, also called periclase or magnesia. The random phase approximation (RPA) is used to include the exact exchange as well as local and nonlocal many-body correlation terms, in order to provide high accuracy. Using the free energy method, we obtain the melting temperature directly from the internal energies calculated with DFT. The free energy differences between the ensembles generated by the molecular dynamics simulations are calculated with thermodynamic integration or thermodynamic perturbation theory. The predicted melting temperature is TmRPA=3043±86K and the values obtained with the PBE and SCAN functionals are TmPBE=2747±59K and TmSCAN=3032±53K.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.99.184103</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>First principles ; Free energy ; Magnesium oxide ; Mathematical analysis ; Melt temperature ; Melting points ; Molecular dynamics ; Periclase ; Perturbation theory</subject><ispartof>Physical review. B, 2019-05, Vol.99 (18), p.184103, Article 184103</ispartof><rights>Copyright American Physical Society May 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9e4ccf3960dfb3269cde4c39fc73ecc5778dd1df0471344c83810e775b8203803</citedby><cites>FETCH-LOGICAL-c319t-9e4ccf3960dfb3269cde4c39fc73ecc5778dd1df0471344c83810e775b8203803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Rang, Max</creatorcontrib><creatorcontrib>Kresse, Georg</creatorcontrib><title>First-principles study of the melting temperature of MgO</title><title>Physical review. B</title><description>Using first principles only, we calculate the melting point of MgO, also called periclase or magnesia. The random phase approximation (RPA) is used to include the exact exchange as well as local and nonlocal many-body correlation terms, in order to provide high accuracy. Using the free energy method, we obtain the melting temperature directly from the internal energies calculated with DFT. The free energy differences between the ensembles generated by the molecular dynamics simulations are calculated with thermodynamic integration or thermodynamic perturbation theory. The predicted melting temperature is TmRPA=3043±86K and the values obtained with the PBE and SCAN functionals are TmPBE=2747±59K and TmSCAN=3032±53K.</description><subject>First principles</subject><subject>Free energy</subject><subject>Magnesium oxide</subject><subject>Mathematical analysis</subject><subject>Melt temperature</subject><subject>Melting points</subject><subject>Molecular dynamics</subject><subject>Periclase</subject><subject>Perturbation theory</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWGq_gKcFz1snm90kc9RirVCpiJ5Dm520W7p_TLJCv71bqp5mePN4w_sxdsthyjmI-7fdMbzT9-MUccp1PkgXbJTlElNEiZf_ewHXbBLCHgC4BFSAI6bnlQ8x7XzV2Ko7UEhC7Mtj0rok7iip6RCrZptEqjvy69h7Op1et6sbduXWh0CT3zlmn_Onj9kiXa6eX2YPy9QKjjFFyq11AiWUbiMyibYcFIHOKkHWFkrpsuSlg1xxkedWC82BlCo2OgOhQYzZ3Tm38-1XTyGafdv7ZnhpsqwopBSyOLmys8v6NgRPzgyN6rU_Gg7mBMn8QTKI5gxJ_AAC0VsI</recordid><startdate>20190510</startdate><enddate>20190510</enddate><creator>Rang, Max</creator><creator>Kresse, Georg</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190510</creationdate><title>First-principles study of the melting temperature of MgO</title><author>Rang, Max ; Kresse, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9e4ccf3960dfb3269cde4c39fc73ecc5778dd1df0471344c83810e775b8203803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>First principles</topic><topic>Free energy</topic><topic>Magnesium oxide</topic><topic>Mathematical analysis</topic><topic>Melt temperature</topic><topic>Melting points</topic><topic>Molecular dynamics</topic><topic>Periclase</topic><topic>Perturbation theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rang, Max</creatorcontrib><creatorcontrib>Kresse, Georg</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rang, Max</au><au>Kresse, Georg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles study of the melting temperature of MgO</atitle><jtitle>Physical review. B</jtitle><date>2019-05-10</date><risdate>2019</risdate><volume>99</volume><issue>18</issue><spage>184103</spage><pages>184103-</pages><artnum>184103</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Using first principles only, we calculate the melting point of MgO, also called periclase or magnesia. The random phase approximation (RPA) is used to include the exact exchange as well as local and nonlocal many-body correlation terms, in order to provide high accuracy. Using the free energy method, we obtain the melting temperature directly from the internal energies calculated with DFT. The free energy differences between the ensembles generated by the molecular dynamics simulations are calculated with thermodynamic integration or thermodynamic perturbation theory. The predicted melting temperature is TmRPA=3043±86K and the values obtained with the PBE and SCAN functionals are TmPBE=2747±59K and TmSCAN=3032±53K.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.99.184103</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-05, Vol.99 (18), p.184103, Article 184103
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2255663650
source American Physical Society Journals
subjects First principles
Free energy
Magnesium oxide
Mathematical analysis
Melt temperature
Melting points
Molecular dynamics
Periclase
Perturbation theory
title First-principles study of the melting temperature of MgO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20study%20of%20the%20melting%20temperature%20of%20MgO&rft.jtitle=Physical%20review.%20B&rft.au=Rang,%20Max&rft.date=2019-05-10&rft.volume=99&rft.issue=18&rft.spage=184103&rft.pages=184103-&rft.artnum=184103&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.99.184103&rft_dat=%3Cproquest_cross%3E2255663650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2255663650&rft_id=info:pmid/&rfr_iscdi=true