Comparing machine learning and regression models for mortality prediction based on the Hungarian Myocardial Infarction Registry
The objective of the current study is to compare the relative performance of decision tree, neural network, and logistic regression for predicting 30-day and 1-year mortality in a real-word, unfiltered dataset (n=47,391) of patients hospitalized with acute myocardial infarction. Area under the ROC c...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2019-09, Vol.179, p.1-7 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Knowledge-based systems |
container_volume | 179 |
creator | Piros, Péter Ferenci, Tamás Fleiner, Rita Andréka, Péter Fujita, Hamido Főző, László Kovács, Levente Jánosi, András |
description | The objective of the current study is to compare the relative performance of decision tree, neural network, and logistic regression for predicting 30-day and 1-year mortality in a real-word, unfiltered dataset (n=47,391) of patients hospitalized with acute myocardial infarction. Area under the ROC curve (AUC) was used for evaluating performance of a learning algorithm. For 30-day mortality, we achieved an average of 0.788 for decision tree models, 0.837 for neural net models and 0.836 for regression models on training set (on validation sets: 0.774, 0.835 and 0.834, respectively). For 1-year mortality, the averages were 0.754 for decision tree models, 0.8194 for neural net models and 0.8191 for regression models (on validation sets: 0.743, 0.8179 and 0.8176, respectively). Differences were non-significant between neural network and regression, but both significantly outperformed decision trees. The machine learning methods investigated in the present study could not outperform traditional regression modelling for mortality prediction in myocardial infarction. |
doi_str_mv | 10.1016/j.knosys.2019.04.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2255648059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705119302060</els_id><sourcerecordid>2255648059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-323eefeaa9c130ac6e9199080c26305d077b7f41258d54d970214f18154aaa873</originalsourceid><addsrcrecordid>eNp9kEGLFDEQhYMoOK77D_YQ8NxtJZ1MOhdBBt1dWBHEPYdsuno2Y08yVnqEPu1fN0N79lSPqvdewcfYjYBWgNh-PLS_Ui5LaSUI24JqQZpXbCN6IxujwL5mG7AaGgNavGXvSjkAgJSi37CXXT6ePMW050cfnmNCPqGndFn4NHDCPWEpMSd-zANOhY-ZqqTZT3Fe-IlwiGG-3J98wYFXMT8jvzunfa31iX9bcvA0RD_x-zR6Ws0_cB_LTMt79mb0U8Hrf_OKPX798nN31zx8v73ffX5oQtepuelkhzii9zaIDnzYohXWQg9BbjvQAxjzZEYlpO4HrQZrQAo1il5o5b3vTXfFPqy9J8q_z1hmd8hnSvWlk1LrrepB2-pSqytQLoVwdCeKR0-LE-AuqN3BrajdBbUD5SrqGvu0xiof_BORXAkRU6hoCMPshhz_X_AXlaCLtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255648059</pqid></control><display><type>article</type><title>Comparing machine learning and regression models for mortality prediction based on the Hungarian Myocardial Infarction Registry</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Piros, Péter ; Ferenci, Tamás ; Fleiner, Rita ; Andréka, Péter ; Fujita, Hamido ; Főző, László ; Kovács, Levente ; Jánosi, András</creator><creatorcontrib>Piros, Péter ; Ferenci, Tamás ; Fleiner, Rita ; Andréka, Péter ; Fujita, Hamido ; Főző, László ; Kovács, Levente ; Jánosi, András</creatorcontrib><description>The objective of the current study is to compare the relative performance of decision tree, neural network, and logistic regression for predicting 30-day and 1-year mortality in a real-word, unfiltered dataset (n=47,391) of patients hospitalized with acute myocardial infarction. Area under the ROC curve (AUC) was used for evaluating performance of a learning algorithm. For 30-day mortality, we achieved an average of 0.788 for decision tree models, 0.837 for neural net models and 0.836 for regression models on training set (on validation sets: 0.774, 0.835 and 0.834, respectively). For 1-year mortality, the averages were 0.754 for decision tree models, 0.8194 for neural net models and 0.8191 for regression models (on validation sets: 0.743, 0.8179 and 0.8176, respectively). Differences were non-significant between neural network and regression, but both significantly outperformed decision trees. The machine learning methods investigated in the present study could not outperform traditional regression modelling for mortality prediction in myocardial infarction.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2019.04.027</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Artificial intelligence ; Decision tree ; Decision trees ; Heart attacks ; Hungarian Myocardial Infarction Registry ; Machine learning ; Mortality ; Mortality prediction ; Myocardial Infarction ; Myocardial Infarction Registry ; Neural network ; Neural networks ; Predictions ; Regression ; Regression analysis ; Regression models</subject><ispartof>Knowledge-based systems, 2019-09, Vol.179, p.1-7</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-323eefeaa9c130ac6e9199080c26305d077b7f41258d54d970214f18154aaa873</citedby><cites>FETCH-LOGICAL-c334t-323eefeaa9c130ac6e9199080c26305d077b7f41258d54d970214f18154aaa873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2019.04.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Piros, Péter</creatorcontrib><creatorcontrib>Ferenci, Tamás</creatorcontrib><creatorcontrib>Fleiner, Rita</creatorcontrib><creatorcontrib>Andréka, Péter</creatorcontrib><creatorcontrib>Fujita, Hamido</creatorcontrib><creatorcontrib>Főző, László</creatorcontrib><creatorcontrib>Kovács, Levente</creatorcontrib><creatorcontrib>Jánosi, András</creatorcontrib><title>Comparing machine learning and regression models for mortality prediction based on the Hungarian Myocardial Infarction Registry</title><title>Knowledge-based systems</title><description>The objective of the current study is to compare the relative performance of decision tree, neural network, and logistic regression for predicting 30-day and 1-year mortality in a real-word, unfiltered dataset (n=47,391) of patients hospitalized with acute myocardial infarction. Area under the ROC curve (AUC) was used for evaluating performance of a learning algorithm. For 30-day mortality, we achieved an average of 0.788 for decision tree models, 0.837 for neural net models and 0.836 for regression models on training set (on validation sets: 0.774, 0.835 and 0.834, respectively). For 1-year mortality, the averages were 0.754 for decision tree models, 0.8194 for neural net models and 0.8191 for regression models (on validation sets: 0.743, 0.8179 and 0.8176, respectively). Differences were non-significant between neural network and regression, but both significantly outperformed decision trees. The machine learning methods investigated in the present study could not outperform traditional regression modelling for mortality prediction in myocardial infarction.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Decision tree</subject><subject>Decision trees</subject><subject>Heart attacks</subject><subject>Hungarian Myocardial Infarction Registry</subject><subject>Machine learning</subject><subject>Mortality</subject><subject>Mortality prediction</subject><subject>Myocardial Infarction</subject><subject>Myocardial Infarction Registry</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Regression models</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEGLFDEQhYMoOK77D_YQ8NxtJZ1MOhdBBt1dWBHEPYdsuno2Y08yVnqEPu1fN0N79lSPqvdewcfYjYBWgNh-PLS_Ui5LaSUI24JqQZpXbCN6IxujwL5mG7AaGgNavGXvSjkAgJSi37CXXT6ePMW050cfnmNCPqGndFn4NHDCPWEpMSd-zANOhY-ZqqTZT3Fe-IlwiGG-3J98wYFXMT8jvzunfa31iX9bcvA0RD_x-zR6Ws0_cB_LTMt79mb0U8Hrf_OKPX798nN31zx8v73ffX5oQtepuelkhzii9zaIDnzYohXWQg9BbjvQAxjzZEYlpO4HrQZrQAo1il5o5b3vTXfFPqy9J8q_z1hmd8hnSvWlk1LrrepB2-pSqytQLoVwdCeKR0-LE-AuqN3BrajdBbUD5SrqGvu0xiof_BORXAkRU6hoCMPshhz_X_AXlaCLtQ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Piros, Péter</creator><creator>Ferenci, Tamás</creator><creator>Fleiner, Rita</creator><creator>Andréka, Péter</creator><creator>Fujita, Hamido</creator><creator>Főző, László</creator><creator>Kovács, Levente</creator><creator>Jánosi, András</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190901</creationdate><title>Comparing machine learning and regression models for mortality prediction based on the Hungarian Myocardial Infarction Registry</title><author>Piros, Péter ; Ferenci, Tamás ; Fleiner, Rita ; Andréka, Péter ; Fujita, Hamido ; Főző, László ; Kovács, Levente ; Jánosi, András</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-323eefeaa9c130ac6e9199080c26305d077b7f41258d54d970214f18154aaa873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Decision tree</topic><topic>Decision trees</topic><topic>Heart attacks</topic><topic>Hungarian Myocardial Infarction Registry</topic><topic>Machine learning</topic><topic>Mortality</topic><topic>Mortality prediction</topic><topic>Myocardial Infarction</topic><topic>Myocardial Infarction Registry</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piros, Péter</creatorcontrib><creatorcontrib>Ferenci, Tamás</creatorcontrib><creatorcontrib>Fleiner, Rita</creatorcontrib><creatorcontrib>Andréka, Péter</creatorcontrib><creatorcontrib>Fujita, Hamido</creatorcontrib><creatorcontrib>Főző, László</creatorcontrib><creatorcontrib>Kovács, Levente</creatorcontrib><creatorcontrib>Jánosi, András</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piros, Péter</au><au>Ferenci, Tamás</au><au>Fleiner, Rita</au><au>Andréka, Péter</au><au>Fujita, Hamido</au><au>Főző, László</au><au>Kovács, Levente</au><au>Jánosi, András</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing machine learning and regression models for mortality prediction based on the Hungarian Myocardial Infarction Registry</atitle><jtitle>Knowledge-based systems</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>179</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>The objective of the current study is to compare the relative performance of decision tree, neural network, and logistic regression for predicting 30-day and 1-year mortality in a real-word, unfiltered dataset (n=47,391) of patients hospitalized with acute myocardial infarction. Area under the ROC curve (AUC) was used for evaluating performance of a learning algorithm. For 30-day mortality, we achieved an average of 0.788 for decision tree models, 0.837 for neural net models and 0.836 for regression models on training set (on validation sets: 0.774, 0.835 and 0.834, respectively). For 1-year mortality, the averages were 0.754 for decision tree models, 0.8194 for neural net models and 0.8191 for regression models (on validation sets: 0.743, 0.8179 and 0.8176, respectively). Differences were non-significant between neural network and regression, but both significantly outperformed decision trees. The machine learning methods investigated in the present study could not outperform traditional regression modelling for mortality prediction in myocardial infarction.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2019.04.027</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2019-09, Vol.179, p.1-7 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_journals_2255648059 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Artificial intelligence Decision tree Decision trees Heart attacks Hungarian Myocardial Infarction Registry Machine learning Mortality Mortality prediction Myocardial Infarction Myocardial Infarction Registry Neural network Neural networks Predictions Regression Regression analysis Regression models |
title | Comparing machine learning and regression models for mortality prediction based on the Hungarian Myocardial Infarction Registry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20machine%20learning%20and%20regression%20models%20for%20mortality%20prediction%20based%20on%20the%20Hungarian%20Myocardial%20Infarction%20Registry&rft.jtitle=Knowledge-based%20systems&rft.au=Piros,%20P%C3%A9ter&rft.date=2019-09-01&rft.volume=179&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2019.04.027&rft_dat=%3Cproquest_cross%3E2255648059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2255648059&rft_id=info:pmid/&rft_els_id=S0950705119302060&rfr_iscdi=true |