Comparing machine learning and regression models for mortality prediction based on the Hungarian Myocardial Infarction Registry

The objective of the current study is to compare the relative performance of decision tree, neural network, and logistic regression for predicting 30-day and 1-year mortality in a real-word, unfiltered dataset (n=47,391) of patients hospitalized with acute myocardial infarction. Area under the ROC c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2019-09, Vol.179, p.1-7
Hauptverfasser: Piros, Péter, Ferenci, Tamás, Fleiner, Rita, Andréka, Péter, Fujita, Hamido, Főző, László, Kovács, Levente, Jánosi, András
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title Knowledge-based systems
container_volume 179
creator Piros, Péter
Ferenci, Tamás
Fleiner, Rita
Andréka, Péter
Fujita, Hamido
Főző, László
Kovács, Levente
Jánosi, András
description The objective of the current study is to compare the relative performance of decision tree, neural network, and logistic regression for predicting 30-day and 1-year mortality in a real-word, unfiltered dataset (n=47,391) of patients hospitalized with acute myocardial infarction. Area under the ROC curve (AUC) was used for evaluating performance of a learning algorithm. For 30-day mortality, we achieved an average of 0.788 for decision tree models, 0.837 for neural net models and 0.836 for regression models on training set (on validation sets: 0.774, 0.835 and 0.834, respectively). For 1-year mortality, the averages were 0.754 for decision tree models, 0.8194 for neural net models and 0.8191 for regression models (on validation sets: 0.743, 0.8179 and 0.8176, respectively). Differences were non-significant between neural network and regression, but both significantly outperformed decision trees. The machine learning methods investigated in the present study could not outperform traditional regression modelling for mortality prediction in myocardial infarction.
doi_str_mv 10.1016/j.knosys.2019.04.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2255648059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705119302060</els_id><sourcerecordid>2255648059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-323eefeaa9c130ac6e9199080c26305d077b7f41258d54d970214f18154aaa873</originalsourceid><addsrcrecordid>eNp9kEGLFDEQhYMoOK77D_YQ8NxtJZ1MOhdBBt1dWBHEPYdsuno2Y08yVnqEPu1fN0N79lSPqvdewcfYjYBWgNh-PLS_Ui5LaSUI24JqQZpXbCN6IxujwL5mG7AaGgNavGXvSjkAgJSi37CXXT6ePMW050cfnmNCPqGndFn4NHDCPWEpMSd-zANOhY-ZqqTZT3Fe-IlwiGG-3J98wYFXMT8jvzunfa31iX9bcvA0RD_x-zR6Ws0_cB_LTMt79mb0U8Hrf_OKPX798nN31zx8v73ffX5oQtepuelkhzii9zaIDnzYohXWQg9BbjvQAxjzZEYlpO4HrQZrQAo1il5o5b3vTXfFPqy9J8q_z1hmd8hnSvWlk1LrrepB2-pSqytQLoVwdCeKR0-LE-AuqN3BrajdBbUD5SrqGvu0xiof_BORXAkRU6hoCMPshhz_X_AXlaCLtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255648059</pqid></control><display><type>article</type><title>Comparing machine learning and regression models for mortality prediction based on the Hungarian Myocardial Infarction Registry</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Piros, Péter ; Ferenci, Tamás ; Fleiner, Rita ; Andréka, Péter ; Fujita, Hamido ; Főző, László ; Kovács, Levente ; Jánosi, András</creator><creatorcontrib>Piros, Péter ; Ferenci, Tamás ; Fleiner, Rita ; Andréka, Péter ; Fujita, Hamido ; Főző, László ; Kovács, Levente ; Jánosi, András</creatorcontrib><description>The objective of the current study is to compare the relative performance of decision tree, neural network, and logistic regression for predicting 30-day and 1-year mortality in a real-word, unfiltered dataset (n=47,391) of patients hospitalized with acute myocardial infarction. Area under the ROC curve (AUC) was used for evaluating performance of a learning algorithm. For 30-day mortality, we achieved an average of 0.788 for decision tree models, 0.837 for neural net models and 0.836 for regression models on training set (on validation sets: 0.774, 0.835 and 0.834, respectively). For 1-year mortality, the averages were 0.754 for decision tree models, 0.8194 for neural net models and 0.8191 for regression models (on validation sets: 0.743, 0.8179 and 0.8176, respectively). Differences were non-significant between neural network and regression, but both significantly outperformed decision trees. The machine learning methods investigated in the present study could not outperform traditional regression modelling for mortality prediction in myocardial infarction.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2019.04.027</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Artificial intelligence ; Decision tree ; Decision trees ; Heart attacks ; Hungarian Myocardial Infarction Registry ; Machine learning ; Mortality ; Mortality prediction ; Myocardial Infarction ; Myocardial Infarction Registry ; Neural network ; Neural networks ; Predictions ; Regression ; Regression analysis ; Regression models</subject><ispartof>Knowledge-based systems, 2019-09, Vol.179, p.1-7</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-323eefeaa9c130ac6e9199080c26305d077b7f41258d54d970214f18154aaa873</citedby><cites>FETCH-LOGICAL-c334t-323eefeaa9c130ac6e9199080c26305d077b7f41258d54d970214f18154aaa873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2019.04.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Piros, Péter</creatorcontrib><creatorcontrib>Ferenci, Tamás</creatorcontrib><creatorcontrib>Fleiner, Rita</creatorcontrib><creatorcontrib>Andréka, Péter</creatorcontrib><creatorcontrib>Fujita, Hamido</creatorcontrib><creatorcontrib>Főző, László</creatorcontrib><creatorcontrib>Kovács, Levente</creatorcontrib><creatorcontrib>Jánosi, András</creatorcontrib><title>Comparing machine learning and regression models for mortality prediction based on the Hungarian Myocardial Infarction Registry</title><title>Knowledge-based systems</title><description>The objective of the current study is to compare the relative performance of decision tree, neural network, and logistic regression for predicting 30-day and 1-year mortality in a real-word, unfiltered dataset (n=47,391) of patients hospitalized with acute myocardial infarction. Area under the ROC curve (AUC) was used for evaluating performance of a learning algorithm. For 30-day mortality, we achieved an average of 0.788 for decision tree models, 0.837 for neural net models and 0.836 for regression models on training set (on validation sets: 0.774, 0.835 and 0.834, respectively). For 1-year mortality, the averages were 0.754 for decision tree models, 0.8194 for neural net models and 0.8191 for regression models (on validation sets: 0.743, 0.8179 and 0.8176, respectively). Differences were non-significant between neural network and regression, but both significantly outperformed decision trees. The machine learning methods investigated in the present study could not outperform traditional regression modelling for mortality prediction in myocardial infarction.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Decision tree</subject><subject>Decision trees</subject><subject>Heart attacks</subject><subject>Hungarian Myocardial Infarction Registry</subject><subject>Machine learning</subject><subject>Mortality</subject><subject>Mortality prediction</subject><subject>Myocardial Infarction</subject><subject>Myocardial Infarction Registry</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Regression models</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEGLFDEQhYMoOK77D_YQ8NxtJZ1MOhdBBt1dWBHEPYdsuno2Y08yVnqEPu1fN0N79lSPqvdewcfYjYBWgNh-PLS_Ui5LaSUI24JqQZpXbCN6IxujwL5mG7AaGgNavGXvSjkAgJSi37CXXT6ePMW050cfnmNCPqGndFn4NHDCPWEpMSd-zANOhY-ZqqTZT3Fe-IlwiGG-3J98wYFXMT8jvzunfa31iX9bcvA0RD_x-zR6Ws0_cB_LTMt79mb0U8Hrf_OKPX798nN31zx8v73ffX5oQtepuelkhzii9zaIDnzYohXWQg9BbjvQAxjzZEYlpO4HrQZrQAo1il5o5b3vTXfFPqy9J8q_z1hmd8hnSvWlk1LrrepB2-pSqytQLoVwdCeKR0-LE-AuqN3BrajdBbUD5SrqGvu0xiof_BORXAkRU6hoCMPshhz_X_AXlaCLtQ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Piros, Péter</creator><creator>Ferenci, Tamás</creator><creator>Fleiner, Rita</creator><creator>Andréka, Péter</creator><creator>Fujita, Hamido</creator><creator>Főző, László</creator><creator>Kovács, Levente</creator><creator>Jánosi, András</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190901</creationdate><title>Comparing machine learning and regression models for mortality prediction based on the Hungarian Myocardial Infarction Registry</title><author>Piros, Péter ; Ferenci, Tamás ; Fleiner, Rita ; Andréka, Péter ; Fujita, Hamido ; Főző, László ; Kovács, Levente ; Jánosi, András</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-323eefeaa9c130ac6e9199080c26305d077b7f41258d54d970214f18154aaa873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Decision tree</topic><topic>Decision trees</topic><topic>Heart attacks</topic><topic>Hungarian Myocardial Infarction Registry</topic><topic>Machine learning</topic><topic>Mortality</topic><topic>Mortality prediction</topic><topic>Myocardial Infarction</topic><topic>Myocardial Infarction Registry</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piros, Péter</creatorcontrib><creatorcontrib>Ferenci, Tamás</creatorcontrib><creatorcontrib>Fleiner, Rita</creatorcontrib><creatorcontrib>Andréka, Péter</creatorcontrib><creatorcontrib>Fujita, Hamido</creatorcontrib><creatorcontrib>Főző, László</creatorcontrib><creatorcontrib>Kovács, Levente</creatorcontrib><creatorcontrib>Jánosi, András</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piros, Péter</au><au>Ferenci, Tamás</au><au>Fleiner, Rita</au><au>Andréka, Péter</au><au>Fujita, Hamido</au><au>Főző, László</au><au>Kovács, Levente</au><au>Jánosi, András</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing machine learning and regression models for mortality prediction based on the Hungarian Myocardial Infarction Registry</atitle><jtitle>Knowledge-based systems</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>179</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>The objective of the current study is to compare the relative performance of decision tree, neural network, and logistic regression for predicting 30-day and 1-year mortality in a real-word, unfiltered dataset (n=47,391) of patients hospitalized with acute myocardial infarction. Area under the ROC curve (AUC) was used for evaluating performance of a learning algorithm. For 30-day mortality, we achieved an average of 0.788 for decision tree models, 0.837 for neural net models and 0.836 for regression models on training set (on validation sets: 0.774, 0.835 and 0.834, respectively). For 1-year mortality, the averages were 0.754 for decision tree models, 0.8194 for neural net models and 0.8191 for regression models (on validation sets: 0.743, 0.8179 and 0.8176, respectively). Differences were non-significant between neural network and regression, but both significantly outperformed decision trees. The machine learning methods investigated in the present study could not outperform traditional regression modelling for mortality prediction in myocardial infarction.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2019.04.027</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2019-09, Vol.179, p.1-7
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2255648059
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Artificial intelligence
Decision tree
Decision trees
Heart attacks
Hungarian Myocardial Infarction Registry
Machine learning
Mortality
Mortality prediction
Myocardial Infarction
Myocardial Infarction Registry
Neural network
Neural networks
Predictions
Regression
Regression analysis
Regression models
title Comparing machine learning and regression models for mortality prediction based on the Hungarian Myocardial Infarction Registry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20machine%20learning%20and%20regression%20models%20for%20mortality%20prediction%20based%20on%20the%20Hungarian%20Myocardial%20Infarction%20Registry&rft.jtitle=Knowledge-based%20systems&rft.au=Piros,%20P%C3%A9ter&rft.date=2019-09-01&rft.volume=179&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2019.04.027&rft_dat=%3Cproquest_cross%3E2255648059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2255648059&rft_id=info:pmid/&rft_els_id=S0950705119302060&rfr_iscdi=true