Characterization of cellulose–chitosan gels prepared using a LiOH/urea aqueous solution

Cellulose–chitosan gels were prepared using a LiOH/urea aqueous solution for a co-dissolution. After cellulose and chitosan were dissolved by a freeze–thaw process, the hydrogels were prepared via regeneration in methanol and washing with water. Finally, freeze-dried cellulose–chitosan gels were obt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2019-07, Vol.26 (10), p.6189-6199
Hauptverfasser: Kim, Ung-Jin, Kimura, Satoshi, Wada, Masahisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6199
container_issue 10
container_start_page 6189
container_title Cellulose (London)
container_volume 26
creator Kim, Ung-Jin
Kimura, Satoshi
Wada, Masahisa
description Cellulose–chitosan gels were prepared using a LiOH/urea aqueous solution for a co-dissolution. After cellulose and chitosan were dissolved by a freeze–thaw process, the hydrogels were prepared via regeneration in methanol and washing with water. Finally, freeze-dried cellulose–chitosan gels were obtained via solvent exchange (water → ethanol →  t -butyl alcohol) followed by freeze-drying. The chitosan contents of the gels were determined by the amino and nitrogen contents, confirming formation at the blend ratio of cellulose and chitosan. Structural and thermal analyses showed that the data profiles were proportional to the content of each component. Although all gels exhibited a three-dimensional porous structure, the introduction of chitosan remarkably increased pore size, resulting in lower transmittance of the hydrogels. The surface area of the cellulose–chitosan gels increased from 247 to 337 m 2 /g, and the swelling ratio gradually improved with an increase in chitosan content, especially up to 22.9 g/g at pH 5 due to protonation of amino groups. The increase in chitosan content significantly reduced the mechanical strength, while the adsorption capacity of anionic dye was greatly enhanced.
doi_str_mv 10.1007/s10570-019-02527-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2255492276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239743308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-d265988e2dc74d9233c956eea6ee56911bf8a1ffa676f57982503803fe070f083</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwA0yWmEOf7Ti2R1QBRarUBSSYLJPYbaoQBzseYOIf-EO-hLRBYutgvcH3nvd0ELokcE0AxCwS4AIyICoDyqnI-BGaEC5oJiV9PkYTUMXui6lTdBbjFgCUoGSCXuYbE0zZ21B_mr72LfYOl7ZpUuOj_fn6Ljd176Np8do2EXfBdibYCqdYt2ts8LJeLWYpWIPNe7I-RRx9k3agc3TiTBPtxd-coqe728f5Iluu7h_mN8uszDn0WUULrqS0tCpFXinKWKl4Ya0ZHi8UIa9OGuKcKUThuFCScmASmLMgwIFkU3Q1crvghxNir7c-hXZYqSnlPFeUiuJwiimRM7Zn0TFVBh9jsE53oX4z4UMT0DvRehStB9F6L1rzocTGUhzC7dqGf_SB1i84sYEr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255492276</pqid></control><display><type>article</type><title>Characterization of cellulose–chitosan gels prepared using a LiOH/urea aqueous solution</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Ung-Jin ; Kimura, Satoshi ; Wada, Masahisa</creator><creatorcontrib>Kim, Ung-Jin ; Kimura, Satoshi ; Wada, Masahisa</creatorcontrib><description>Cellulose–chitosan gels were prepared using a LiOH/urea aqueous solution for a co-dissolution. After cellulose and chitosan were dissolved by a freeze–thaw process, the hydrogels were prepared via regeneration in methanol and washing with water. Finally, freeze-dried cellulose–chitosan gels were obtained via solvent exchange (water → ethanol →  t -butyl alcohol) followed by freeze-drying. The chitosan contents of the gels were determined by the amino and nitrogen contents, confirming formation at the blend ratio of cellulose and chitosan. Structural and thermal analyses showed that the data profiles were proportional to the content of each component. Although all gels exhibited a three-dimensional porous structure, the introduction of chitosan remarkably increased pore size, resulting in lower transmittance of the hydrogels. The surface area of the cellulose–chitosan gels increased from 247 to 337 m 2 /g, and the swelling ratio gradually improved with an increase in chitosan content, especially up to 22.9 g/g at pH 5 due to protonation of amino groups. The increase in chitosan content significantly reduced the mechanical strength, while the adsorption capacity of anionic dye was greatly enhanced.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-019-02527-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aqueous solutions ; Bioorganic Chemistry ; Butanol ; Cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Chitosan ; Composites ; Ethanol ; Freeze drying ; Gels ; Glass ; Hydrogels ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Pore size ; Porosity ; Protonation ; Regeneration ; Sustainable Development ; Swelling ratio ; Ureas</subject><ispartof>Cellulose (London), 2019-07, Vol.26 (10), p.6189-6199</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Cellulose is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-d265988e2dc74d9233c956eea6ee56911bf8a1ffa676f57982503803fe070f083</citedby><cites>FETCH-LOGICAL-c450t-d265988e2dc74d9233c956eea6ee56911bf8a1ffa676f57982503803fe070f083</cites><orcidid>0000-0001-7517-1611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-019-02527-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-019-02527-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kim, Ung-Jin</creatorcontrib><creatorcontrib>Kimura, Satoshi</creatorcontrib><creatorcontrib>Wada, Masahisa</creatorcontrib><title>Characterization of cellulose–chitosan gels prepared using a LiOH/urea aqueous solution</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Cellulose–chitosan gels were prepared using a LiOH/urea aqueous solution for a co-dissolution. After cellulose and chitosan were dissolved by a freeze–thaw process, the hydrogels were prepared via regeneration in methanol and washing with water. Finally, freeze-dried cellulose–chitosan gels were obtained via solvent exchange (water → ethanol →  t -butyl alcohol) followed by freeze-drying. The chitosan contents of the gels were determined by the amino and nitrogen contents, confirming formation at the blend ratio of cellulose and chitosan. Structural and thermal analyses showed that the data profiles were proportional to the content of each component. Although all gels exhibited a three-dimensional porous structure, the introduction of chitosan remarkably increased pore size, resulting in lower transmittance of the hydrogels. The surface area of the cellulose–chitosan gels increased from 247 to 337 m 2 /g, and the swelling ratio gradually improved with an increase in chitosan content, especially up to 22.9 g/g at pH 5 due to protonation of amino groups. The increase in chitosan content significantly reduced the mechanical strength, while the adsorption capacity of anionic dye was greatly enhanced.</description><subject>Aqueous solutions</subject><subject>Bioorganic Chemistry</subject><subject>Butanol</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Composites</subject><subject>Ethanol</subject><subject>Freeze drying</subject><subject>Gels</subject><subject>Glass</subject><subject>Hydrogels</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Protonation</subject><subject>Regeneration</subject><subject>Sustainable Development</subject><subject>Swelling ratio</subject><subject>Ureas</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kLFOwzAURS0EEqXwA0yWmEOf7Ti2R1QBRarUBSSYLJPYbaoQBzseYOIf-EO-hLRBYutgvcH3nvd0ELokcE0AxCwS4AIyICoDyqnI-BGaEC5oJiV9PkYTUMXui6lTdBbjFgCUoGSCXuYbE0zZ21B_mr72LfYOl7ZpUuOj_fn6Ljd176Np8do2EXfBdibYCqdYt2ts8LJeLWYpWIPNe7I-RRx9k3agc3TiTBPtxd-coqe728f5Iluu7h_mN8uszDn0WUULrqS0tCpFXinKWKl4Ya0ZHi8UIa9OGuKcKUThuFCScmASmLMgwIFkU3Q1crvghxNir7c-hXZYqSnlPFeUiuJwiimRM7Zn0TFVBh9jsE53oX4z4UMT0DvRehStB9F6L1rzocTGUhzC7dqGf_SB1i84sYEr</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Kim, Ung-Jin</creator><creator>Kimura, Satoshi</creator><creator>Wada, Masahisa</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7517-1611</orcidid></search><sort><creationdate>20190701</creationdate><title>Characterization of cellulose–chitosan gels prepared using a LiOH/urea aqueous solution</title><author>Kim, Ung-Jin ; Kimura, Satoshi ; Wada, Masahisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-d265988e2dc74d9233c956eea6ee56911bf8a1ffa676f57982503803fe070f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous solutions</topic><topic>Bioorganic Chemistry</topic><topic>Butanol</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Composites</topic><topic>Ethanol</topic><topic>Freeze drying</topic><topic>Gels</topic><topic>Glass</topic><topic>Hydrogels</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Protonation</topic><topic>Regeneration</topic><topic>Sustainable Development</topic><topic>Swelling ratio</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ung-Jin</creatorcontrib><creatorcontrib>Kimura, Satoshi</creatorcontrib><creatorcontrib>Wada, Masahisa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ung-Jin</au><au>Kimura, Satoshi</au><au>Wada, Masahisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of cellulose–chitosan gels prepared using a LiOH/urea aqueous solution</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>26</volume><issue>10</issue><spage>6189</spage><epage>6199</epage><pages>6189-6199</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Cellulose–chitosan gels were prepared using a LiOH/urea aqueous solution for a co-dissolution. After cellulose and chitosan were dissolved by a freeze–thaw process, the hydrogels were prepared via regeneration in methanol and washing with water. Finally, freeze-dried cellulose–chitosan gels were obtained via solvent exchange (water → ethanol →  t -butyl alcohol) followed by freeze-drying. The chitosan contents of the gels were determined by the amino and nitrogen contents, confirming formation at the blend ratio of cellulose and chitosan. Structural and thermal analyses showed that the data profiles were proportional to the content of each component. Although all gels exhibited a three-dimensional porous structure, the introduction of chitosan remarkably increased pore size, resulting in lower transmittance of the hydrogels. The surface area of the cellulose–chitosan gels increased from 247 to 337 m 2 /g, and the swelling ratio gradually improved with an increase in chitosan content, especially up to 22.9 g/g at pH 5 due to protonation of amino groups. The increase in chitosan content significantly reduced the mechanical strength, while the adsorption capacity of anionic dye was greatly enhanced.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-019-02527-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7517-1611</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2019-07, Vol.26 (10), p.6189-6199
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2255492276
source SpringerLink Journals - AutoHoldings
subjects Aqueous solutions
Bioorganic Chemistry
Butanol
Cellulose
Ceramics
Chemistry
Chemistry and Materials Science
Chitosan
Composites
Ethanol
Freeze drying
Gels
Glass
Hydrogels
Natural Materials
Organic Chemistry
Original Research
Physical Chemistry
Polymer Sciences
Pore size
Porosity
Protonation
Regeneration
Sustainable Development
Swelling ratio
Ureas
title Characterization of cellulose–chitosan gels prepared using a LiOH/urea aqueous solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20cellulose%E2%80%93chitosan%20gels%20prepared%20using%20a%20LiOH/urea%20aqueous%20solution&rft.jtitle=Cellulose%20(London)&rft.au=Kim,%20Ung-Jin&rft.date=2019-07-01&rft.volume=26&rft.issue=10&rft.spage=6189&rft.epage=6199&rft.pages=6189-6199&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-019-02527-5&rft_dat=%3Cproquest_cross%3E2239743308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2255492276&rft_id=info:pmid/&rfr_iscdi=true