Characterization of cellulose–chitosan gels prepared using a LiOH/urea aqueous solution
Cellulose–chitosan gels were prepared using a LiOH/urea aqueous solution for a co-dissolution. After cellulose and chitosan were dissolved by a freeze–thaw process, the hydrogels were prepared via regeneration in methanol and washing with water. Finally, freeze-dried cellulose–chitosan gels were obt...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2019-07, Vol.26 (10), p.6189-6199 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6199 |
---|---|
container_issue | 10 |
container_start_page | 6189 |
container_title | Cellulose (London) |
container_volume | 26 |
creator | Kim, Ung-Jin Kimura, Satoshi Wada, Masahisa |
description | Cellulose–chitosan gels were prepared using a LiOH/urea aqueous solution for a co-dissolution. After cellulose and chitosan were dissolved by a freeze–thaw process, the hydrogels were prepared via regeneration in methanol and washing with water. Finally, freeze-dried cellulose–chitosan gels were obtained via solvent exchange (water → ethanol →
t
-butyl alcohol) followed by freeze-drying. The chitosan contents of the gels were determined by the amino and nitrogen contents, confirming formation at the blend ratio of cellulose and chitosan. Structural and thermal analyses showed that the data profiles were proportional to the content of each component. Although all gels exhibited a three-dimensional porous structure, the introduction of chitosan remarkably increased pore size, resulting in lower transmittance of the hydrogels. The surface area of the cellulose–chitosan gels increased from 247 to 337 m
2
/g, and the swelling ratio gradually improved with an increase in chitosan content, especially up to 22.9 g/g at pH 5 due to protonation of amino groups. The increase in chitosan content significantly reduced the mechanical strength, while the adsorption capacity of anionic dye was greatly enhanced. |
doi_str_mv | 10.1007/s10570-019-02527-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2255492276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239743308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-d265988e2dc74d9233c956eea6ee56911bf8a1ffa676f57982503803fe070f083</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwA0yWmEOf7Ti2R1QBRarUBSSYLJPYbaoQBzseYOIf-EO-hLRBYutgvcH3nvd0ELokcE0AxCwS4AIyICoDyqnI-BGaEC5oJiV9PkYTUMXui6lTdBbjFgCUoGSCXuYbE0zZ21B_mr72LfYOl7ZpUuOj_fn6Ljd176Np8do2EXfBdibYCqdYt2ts8LJeLWYpWIPNe7I-RRx9k3agc3TiTBPtxd-coqe728f5Iluu7h_mN8uszDn0WUULrqS0tCpFXinKWKl4Ya0ZHi8UIa9OGuKcKUThuFCScmASmLMgwIFkU3Q1crvghxNir7c-hXZYqSnlPFeUiuJwiimRM7Zn0TFVBh9jsE53oX4z4UMT0DvRehStB9F6L1rzocTGUhzC7dqGf_SB1i84sYEr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255492276</pqid></control><display><type>article</type><title>Characterization of cellulose–chitosan gels prepared using a LiOH/urea aqueous solution</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Ung-Jin ; Kimura, Satoshi ; Wada, Masahisa</creator><creatorcontrib>Kim, Ung-Jin ; Kimura, Satoshi ; Wada, Masahisa</creatorcontrib><description>Cellulose–chitosan gels were prepared using a LiOH/urea aqueous solution for a co-dissolution. After cellulose and chitosan were dissolved by a freeze–thaw process, the hydrogels were prepared via regeneration in methanol and washing with water. Finally, freeze-dried cellulose–chitosan gels were obtained via solvent exchange (water → ethanol →
t
-butyl alcohol) followed by freeze-drying. The chitosan contents of the gels were determined by the amino and nitrogen contents, confirming formation at the blend ratio of cellulose and chitosan. Structural and thermal analyses showed that the data profiles were proportional to the content of each component. Although all gels exhibited a three-dimensional porous structure, the introduction of chitosan remarkably increased pore size, resulting in lower transmittance of the hydrogels. The surface area of the cellulose–chitosan gels increased from 247 to 337 m
2
/g, and the swelling ratio gradually improved with an increase in chitosan content, especially up to 22.9 g/g at pH 5 due to protonation of amino groups. The increase in chitosan content significantly reduced the mechanical strength, while the adsorption capacity of anionic dye was greatly enhanced.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-019-02527-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aqueous solutions ; Bioorganic Chemistry ; Butanol ; Cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Chitosan ; Composites ; Ethanol ; Freeze drying ; Gels ; Glass ; Hydrogels ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Pore size ; Porosity ; Protonation ; Regeneration ; Sustainable Development ; Swelling ratio ; Ureas</subject><ispartof>Cellulose (London), 2019-07, Vol.26 (10), p.6189-6199</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Cellulose is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-d265988e2dc74d9233c956eea6ee56911bf8a1ffa676f57982503803fe070f083</citedby><cites>FETCH-LOGICAL-c450t-d265988e2dc74d9233c956eea6ee56911bf8a1ffa676f57982503803fe070f083</cites><orcidid>0000-0001-7517-1611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-019-02527-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-019-02527-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kim, Ung-Jin</creatorcontrib><creatorcontrib>Kimura, Satoshi</creatorcontrib><creatorcontrib>Wada, Masahisa</creatorcontrib><title>Characterization of cellulose–chitosan gels prepared using a LiOH/urea aqueous solution</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Cellulose–chitosan gels were prepared using a LiOH/urea aqueous solution for a co-dissolution. After cellulose and chitosan were dissolved by a freeze–thaw process, the hydrogels were prepared via regeneration in methanol and washing with water. Finally, freeze-dried cellulose–chitosan gels were obtained via solvent exchange (water → ethanol →
t
-butyl alcohol) followed by freeze-drying. The chitosan contents of the gels were determined by the amino and nitrogen contents, confirming formation at the blend ratio of cellulose and chitosan. Structural and thermal analyses showed that the data profiles were proportional to the content of each component. Although all gels exhibited a three-dimensional porous structure, the introduction of chitosan remarkably increased pore size, resulting in lower transmittance of the hydrogels. The surface area of the cellulose–chitosan gels increased from 247 to 337 m
2
/g, and the swelling ratio gradually improved with an increase in chitosan content, especially up to 22.9 g/g at pH 5 due to protonation of amino groups. The increase in chitosan content significantly reduced the mechanical strength, while the adsorption capacity of anionic dye was greatly enhanced.</description><subject>Aqueous solutions</subject><subject>Bioorganic Chemistry</subject><subject>Butanol</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Composites</subject><subject>Ethanol</subject><subject>Freeze drying</subject><subject>Gels</subject><subject>Glass</subject><subject>Hydrogels</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Protonation</subject><subject>Regeneration</subject><subject>Sustainable Development</subject><subject>Swelling ratio</subject><subject>Ureas</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kLFOwzAURS0EEqXwA0yWmEOf7Ti2R1QBRarUBSSYLJPYbaoQBzseYOIf-EO-hLRBYutgvcH3nvd0ELokcE0AxCwS4AIyICoDyqnI-BGaEC5oJiV9PkYTUMXui6lTdBbjFgCUoGSCXuYbE0zZ21B_mr72LfYOl7ZpUuOj_fn6Ljd176Np8do2EXfBdibYCqdYt2ts8LJeLWYpWIPNe7I-RRx9k3agc3TiTBPtxd-coqe728f5Iluu7h_mN8uszDn0WUULrqS0tCpFXinKWKl4Ya0ZHi8UIa9OGuKcKUThuFCScmASmLMgwIFkU3Q1crvghxNir7c-hXZYqSnlPFeUiuJwiimRM7Zn0TFVBh9jsE53oX4z4UMT0DvRehStB9F6L1rzocTGUhzC7dqGf_SB1i84sYEr</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Kim, Ung-Jin</creator><creator>Kimura, Satoshi</creator><creator>Wada, Masahisa</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7517-1611</orcidid></search><sort><creationdate>20190701</creationdate><title>Characterization of cellulose–chitosan gels prepared using a LiOH/urea aqueous solution</title><author>Kim, Ung-Jin ; Kimura, Satoshi ; Wada, Masahisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-d265988e2dc74d9233c956eea6ee56911bf8a1ffa676f57982503803fe070f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous solutions</topic><topic>Bioorganic Chemistry</topic><topic>Butanol</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Composites</topic><topic>Ethanol</topic><topic>Freeze drying</topic><topic>Gels</topic><topic>Glass</topic><topic>Hydrogels</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Protonation</topic><topic>Regeneration</topic><topic>Sustainable Development</topic><topic>Swelling ratio</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ung-Jin</creatorcontrib><creatorcontrib>Kimura, Satoshi</creatorcontrib><creatorcontrib>Wada, Masahisa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ung-Jin</au><au>Kimura, Satoshi</au><au>Wada, Masahisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of cellulose–chitosan gels prepared using a LiOH/urea aqueous solution</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>26</volume><issue>10</issue><spage>6189</spage><epage>6199</epage><pages>6189-6199</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Cellulose–chitosan gels were prepared using a LiOH/urea aqueous solution for a co-dissolution. After cellulose and chitosan were dissolved by a freeze–thaw process, the hydrogels were prepared via regeneration in methanol and washing with water. Finally, freeze-dried cellulose–chitosan gels were obtained via solvent exchange (water → ethanol →
t
-butyl alcohol) followed by freeze-drying. The chitosan contents of the gels were determined by the amino and nitrogen contents, confirming formation at the blend ratio of cellulose and chitosan. Structural and thermal analyses showed that the data profiles were proportional to the content of each component. Although all gels exhibited a three-dimensional porous structure, the introduction of chitosan remarkably increased pore size, resulting in lower transmittance of the hydrogels. The surface area of the cellulose–chitosan gels increased from 247 to 337 m
2
/g, and the swelling ratio gradually improved with an increase in chitosan content, especially up to 22.9 g/g at pH 5 due to protonation of amino groups. The increase in chitosan content significantly reduced the mechanical strength, while the adsorption capacity of anionic dye was greatly enhanced.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-019-02527-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7517-1611</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2019-07, Vol.26 (10), p.6189-6199 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2255492276 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aqueous solutions Bioorganic Chemistry Butanol Cellulose Ceramics Chemistry Chemistry and Materials Science Chitosan Composites Ethanol Freeze drying Gels Glass Hydrogels Natural Materials Organic Chemistry Original Research Physical Chemistry Polymer Sciences Pore size Porosity Protonation Regeneration Sustainable Development Swelling ratio Ureas |
title | Characterization of cellulose–chitosan gels prepared using a LiOH/urea aqueous solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20cellulose%E2%80%93chitosan%20gels%20prepared%20using%20a%20LiOH/urea%20aqueous%20solution&rft.jtitle=Cellulose%20(London)&rft.au=Kim,%20Ung-Jin&rft.date=2019-07-01&rft.volume=26&rft.issue=10&rft.spage=6189&rft.epage=6199&rft.pages=6189-6199&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-019-02527-5&rft_dat=%3Cproquest_cross%3E2239743308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2255492276&rft_id=info:pmid/&rfr_iscdi=true |